Is the following reasoning correct?
Determine a harmonic conjugate to the function \begin{equation} f(x,y)=2y^{3}-6x^{2}y+4x^{2}-7xy-4y^{2}+3x+4y-4 \end{equation}
We first of all check if $f(x,y)$ is indeed a harmonic function. This amounts to show $f(x,y)$ satisfy the two-dimensional Laplace equation \begin{equation} \frac{\partial^{2 }f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0 \tag{1} \end{equation} We have $\frac{\partial^{2}f}{\partial x^{2}}=8-12y$ and $\frac{\partial^{2} f}{\partial y^{2}}=12y-8$. Thus, (1) is fulfilled, and so $f(x,y)$ is harmonic.
Next, we seek to determine a harmonic conjugate to the given function. Let $u(x,y)=2y^{3}-6x^{2}y+4x^{2}-7xy-4y^{2}+3x+4y-4$. \begin{equation*} u_{x}=v_{y} \iff -12xy+8x-7y+3=v_{y} \end{equation*} Integrate with respect to $y$ \begin{equation} v=-6xy^{2}+8xy-\frac{7}{2}y^{2}+3y+h(x) \tag{2} \end{equation} where $h(x)$ is a function of $x$ alone. To determine this, we use the second Cauchy-Riemann equation $v_{x}=-u_{y}$ \begin{align*} -u_{y}=v_{x} &\iff 6x^{2}+7x-6y^{2}+8y-4=h'(x)-6y^{2}+8y \\ &\iff h'(x)=6x^{2}+7x-4 \end{align*} Integrating with respect to $x$ we have \begin{equation} h(x)=2x^{3}+\frac{7}{2}x^{2}-4x+C \end{equation} where $C$ is an arbitrary constant. Therefore, if we let $C=0$, then one harmonic conjugate of $u$ is given as: \begin{equation} v=2x^{3}+\frac{7}{2}x^{2}-6xy^{2}+8xy-4x-\frac{7}{2}y^{2}+3y \end{equation}