Find all entire functions $f(z)$ such that $Re(f(z))=1+2x^2+x^3-2y^2-3xy^2$ where $z=x+iy$.
My attempt to solve it follows.
Let $f(x,y)=u(x,y)+iv(x,y)$ where $u(x,y)=1+2x^2+x^3-2y^2-3xy^2$.
Because $f(z)$ is entire, it respects Cauchy - Riemann equations, so:
$$\begin{cases}u_x(x,y)=v_y(x,y)\\ u_y(x,y)=-v_x(x,y)\end{cases} \Longrightarrow \begin{cases}v_y(x,y)=4x+3x^2-3y^2\\ v_x(x,y)=4y+6xy\end{cases}$$
Integrating the two equations, I obtain that:
$$\begin{cases}v(x,y)=4xy+3x^2y-y^3+h(x)\\ v(x,y)=4xy+3x^2y+k(y)\end{cases}$$
These conditions hold if and only if $k(y)=-y^3$ and $h(x)$ is constant. Therefore, $v(x,y)=4xy+3x^2y-y^3+c$ where $c\in \mathbb{R}$.
So, I have that:
$$f(x,y)=1+2x^2+x^3-2y^2-3xy^2+i\left(4xy+3x^2y-y^3+c \right)=$$
$$=1+\left[2x^2-2y^2+4ixy\right]+\left[x^3-3xy^2+3ix^2y-iy^3\right]+ic=$$ $$=1+2(x+iy)^2+(x+iy)^3+ic$$
Therefore, if $z=x+iy$, the functions requested are:
$$f(z)=z^3+2z^2+ic+1, \quad c\in \mathbb{R}$$
(clearly entire for all $c$ because it is a polynomial of the variable $z$)
Is this correct? Is the step in which I've found $v(x,y)$ formally correct or it can be written better? Thanks!