is it possible to find a matrix $J_1 \in GL(4,\mathbb R)$ such that $\det J_1=-1 $ and $J_1^2=-\operatorname{id}$ ?
if it is, how can we prove that every matrix $M \in GL(4,\mathbb R)$ such that $M^2=-\operatorname{id}$ is conjugate to either $J_1$ or $J_0$, where $$ J_0 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\0 & 0 & 0 & 1 \\0 & 0 & -1 & 0 \\ \end{pmatrix},$$ namely $M = A^{-1}J_{0,1}A$ for some $A \in GL(4,\mathbb R)$ ?