5

Let $(X,\Omega,\mu)$ be an arbitrary measure space, $1<p<\infty$ , and $\frac{1}{p}+ \frac{1}{q} = 1$. If $k:X. X\to \Bbb C$ is an $\Omega.\Omega-$ measurable function such that $$M = [\int (\int |k(x,y)|^p d\mu(x))^{\frac{q}{p}} d\mu(y)]^{\frac{1}{q}}< \infty$$ and if $(Kf)(x)=\int k(x,y)f(y)d\mu(y) $, then $K$ is compact operator on $L^p(\mu)$ and $||K||\leq M$.

I know that on reflexive spaces completely continuous operators are compact. Thus I started to show $K$ is completely continuous, but after a while I got stuck. Please help me. Thanks in advance.

Asaf Karagila
  • 405,794
niki
  • 3,532

2 Answers2

9

In the following, I will assume that $\mu$ is $\sigma$-finite for simplicity. One can probably drop that assumption with a bit of extra work. Also, I do not claim that my proof is one of the simpler ones.

Let us define $$ \left\Vert k\right\Vert _{L^{p,q}}:=\left(\int\left(\int\left|k\left(x,y\right)\right|^{p}d\mu\left(x\right)\right)^{q/p}\, d\mu\left(y\right)\right)^{1/q} $$ for $k:X\times X\rightarrow\mathbb{C}$ measurable with respect to the product $\sigma$-Algebra $\Omega\otimes\Omega$ and note that the space $$ L^{p,q}:=\left\{ k:X\times X\rightarrow\mathbb{C}\mid k\text{ measurable w.r.t. }\Omega\otimes\Omega\text{ and }\left\Vert k\right\Vert _{L^{p,q}}<\infty\right\} $$ is a normed vector space (with the $L^{p,q}$-norm defined above).

Observe that your assumption exactly means $\left\Vert k\right\Vert _{L^{p,q}}<\infty$. Let us now define $$ \Gamma:L^{p,q}\rightarrow\mathcal{B}\left(L^{p},L^{p}\right),k\mapsto K, $$ where the operator $K$ for the function $k$ is defined as in your post (see also below).

For $f\in L^{p}$, $g\in L^{q}$, we have \begin{eqnarray*} \int\left|g\left(x\right)\right|\int\left|k\left(x,y\right)f\left(y\right)\right|\, dy\, dx & = & \int\left|f\left(y\right)\right|\int\left|g\left(x\right)\right|\left|k\left(x,y\right)\right|\, dx\, dy\\ & \leq & \int\left|f\left(y\right)\right|\cdot\left\Vert g\right\Vert _{q}\cdot\left(\int\left|k\left(x,y\right)\right|^{p}\, dx\right)^{1/p}\, dy\\ & \leq & \left\Vert g\right\Vert _{q}\cdot\left\Vert f\right\Vert _{p}\cdot\left(\int\left(\int\left|k\left(x,y\right)\right|^{p}\, dx\right)^{q/p}\, dy\right)^{1/q}\\ & = & \left\Vert g\right\Vert _{q}\cdot\left\Vert f\right\Vert _{p}\cdot\left\Vert k\right\Vert _{L^{p,q}}<\infty. \end{eqnarray*} As this holds for all $g\in L^{q}$, we conclude that $\left(\Gamma k\right)f=\left(x\mapsto\int k\left(x,y\right)f\left(y\right)\, dy\right)\in L^{p}$ for all $f\in L^{p}$ with $\left\Vert \left(\Gamma k\right)f\right\Vert _{p}\leq\left\Vert f\right\Vert _{p}\cdot\left\Vert k\right\Vert _{L^{p,q}}$, which implies that $\Gamma$ is a bounded linear operator with norm $\left\Vert \Gamma\right\Vert \leq1$.

Compactness is a more complicated buisness.



EDIT: I just discovered a simplified proof which goes as follows: Let $$ k_{n}:=k\cdot\chi_{X_{n}\times X_{n}}\cdot\chi_{\left|k\right|^{-1}\left(\left[0,n\right]\right)}, $$ where $X=\bigcup_{n\in\mathbb{N}}X_{n}$, each $X_{n}$ is of finite measure and $X_{n}\subset X_{n+1}$ holds for all $n\in\mathbb{N}$. The existence of such a sequence $(X_n)_n$ is ensured by $\sigma$-finiteness of $\mu$, which I assume (as noted above).

Then $k_{n}\left(x,y\right)\to k\left(x,y\right)$ pointwise and $\left|k_{n}\left(x,y\right)\right|\leq\left|k\left(x,y\right)\right|$, which yields $$ \left\Vert k_{n}-k\right\Vert _{L^{p,q}}\xrightarrow[n\rightarrow\infty]{}0 $$ by dominated convergence. This implies $\Gamma k_{n}\to\Gamma k$ with respect to the operator norm, so that it suffices to establish compactness of $\Gamma k_{n}$ (because the set of compact operators is closed w.r.t. the convergence in operator norm). This means that we can assume w.l.o.g. that $k$ is bounded by $L>0$ and vanishes outside some set $Y\times Y$ where $Y$ is of finite measure.

Now let $\left(f_{n}\right)_{n\in\mathbb{N}}$ be a sequence in $L^{p}$ with $f_{n}\rightharpoonup f$. For each $x$, we have $\left|k\left(x,y\right)\right|\leq L\cdot\chi_{Y}\left(y\right)\in L^{q}\left(\mu\right)$. This implies $$ \left(\left(\Gamma k\right)f_{n}\right)\left(x\right)=\int k\left(x,y\right)\cdot f_{n}\left(y\right)\, d\mu\left(y\right)\xrightarrow[n\rightarrow\infty]{}\int k\left(x,y\right)\cdot f\left(y\right)\, d\mu\left(y\right)=\left(\left(\Gamma k\right)f\right)\left(x\right). $$ Furthermore, $$ \left|\left(\left(\Gamma k\right)f_{n}\right)\left(x\right)\right|\leq\int\left|k\left(x,y\right)\right|\cdot\left|f_{n}\left(y\right)\right|\, d\mu\left(y\right)\leq L\cdot\left\Vert \chi_{Y}\right\Vert _{q}\cdot\left\Vert f_{n}\right\Vert _{p}\leq C<\infty, $$ because the $L^{p}$-norm of a weakly convergent sequence is bounded. But also $\left(\left(\Gamma k\right)f_{n}\right)\left(x\right)=0$ for $x\notin Y$, because of $k\left(x,y\right)=0$ for $x\notin Y$. Hence, $$ \left|\left(\left(\Gamma k\right)f_{n}\right)\left(x\right)\right|\leq C\cdot\chi_{Y}\left(x\right)\in L^{p}\left(\mu\right). $$ By dominated convergence, this yields $$ \left\Vert \left(\Gamma k\right)f_{n}-\left(\Gamma k\right)f\right\Vert _{p}\xrightarrow[n\rightarrow\infty]{}0, $$ so that $\Gamma k$ is a compact operator, because $L^{p}\left(\mu\right)$ is reflexive and $\Gamma k$ is completely continuous.



My original (more complicated) proof was the following: First assume that $k=\sum_{i=1}^{n}\alpha_{i}\cdot\chi_{A_{i}\times B_{i}}$ with $A_{i},B_{i}\in\Omega$ of finite measure. This implies $$ \left(\left(\Gamma k\right)f\right)\left(x\right)=\sum_{i=1}^{n}\alpha_{i}\cdot\int\chi_{A_{i}\times B_{i}}\left(x,y\right)\cdot f\left(y\right)\, dy=\sum_{i=1}^{n}\alpha_{i}\int_{B_{i}}f\left(y\right)\, dy\cdot\chi_{A_{i}}\left(x\right) $$ and hence $\left(\Gamma k\right)f\in\left\langle \chi_{A_{1}},\dots,\chi_{A_{n}}\right\rangle $ for all(!) $f\in L^{p}$, so that the image of $\Gamma k$ is finite dimensional. It is then easy to see that $\Gamma k$ is a compact operator.

Finally, it is well-known that the set of compact operators is closed with respect to the operator norm. Hence, it suffices to show that functions of the form $k=\sum_{i=1}^{n}\alpha_{i}\cdot\chi_{A_{i}\times B_{i}}$ with $A_{i},B_{i}\in\Omega$ of finite measure are dense in $L^{p,q}$. To this end, we use the following

Lemma: For every $M\in\Omega\otimes\Omega$ with $\chi_{M}\in L^{p,q}$ and $\varepsilon>0$, we have $\left\Vert \chi_{M}-\sum_{i=1}^{n}\alpha_{i}\chi_{A_{i}\times B_{i}}\right\Vert _{L^{p,q}}<\varepsilon$ for suitable $n\in\mathbb{N}$, $\alpha_{1},\dots,\alpha_{n}\in\mathbb{R}$ and $A_{1},\dots,A_{n},B_{1},\dots,B_{n}\in\Omega$ of finite measure.

Proof: Assume for the moment that $\mu\left(X\right)<\infty$. Now, let $$ V:=\left\langle \chi_{A\times B}\mid A,B\in\Omega\text{ with }\mu\left(A\right),\mu\left(B\right)<\infty\right\rangle , $$ the vector space spanned by all characteristic functions of "rectangular" sets and $W:=\overline{V}\leq L^{p,q}$, where the closure is taken with respect to the $L^{p,q}$-norm defined above. Set $$ \mathcal{G}:=\left\{ M\in\Omega\otimes\Omega\,\mid\,\chi_{A}\in W\right\} . $$ We will show that $\mathcal{G}$ is a $\lambda$-system. As it trivially contains the $\pi$-system $\left\{ A\times B\mid A,B\in\Omega\right\} $ of all "rectangular" sets $A\times B$ with $A,B\in\Omega$ (in particular, $\emptyset$ and $X\times X$), this will establish $\mathcal{G}=\Omega\otimes\Omega$.

Let $M,N\in\mathcal{G}$ with $N\subset M$ and $\varepsilon>0$. Then there are $f,g\in V$ with $\left\Vert \chi_{M}-f\right\Vert _{L^{p,q}}<\frac{\varepsilon}{2}$ and $\left\Vert \chi_{N}-g\right\Vert _{L^{p,q}}<\frac{\varepsilon}{2}$. As $V$ is a vector space, $f-g\in V$. But $N\subset M$ implies $\chi_{M\setminus N}=\chi_{M}-\chi_{N}$ and hence $$ \left|\chi_{M\setminus N}-\left(f-g\right)\right|=\left|\left(\chi_{M}-f\right)+\left(g-\chi_{N}\right)\right|\leq\left|\chi_{M}-f\right|+\left|\chi_{N}-g\right|, $$ which entails $\left\Vert \chi_{M\setminus N}-\left(f-g\right)\right\Vert _{L^{p,q}}\leq\left\Vert \chi_{M}-f\right\Vert _{L^{p,q}}+\left\Vert \chi_{N}-g\right\Vert _{L^{p,q}}<\varepsilon$. As $\varepsilon>0$ was arbitrary, $\chi_{M\setminus N}\in\overline{V}=W$ and hence $M\setminus N\in\mathcal{G}$.

Now, let $\left(M_{n}\right)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{G}$ with $M_{n}\subset M_{n+1}$ for all $n\in\mathbb{N}$ and $M:=\bigcup_{n\in\mathbb{N}}M_{n}$. This implies $M-\chi_{M_{i}}\xrightarrow[n\rightarrow\infty]{}0$ pointwise. By dominated convergence (note that we assume $\mu\left(X\right)<\infty$ and that $p,q<\infty$), we conclude $$ \left\Vert \chi_{M}-\chi_{M_{i}}\right\Vert _{L^{p,q}}\xrightarrow[n\rightarrow\infty]{}0. $$ But $\chi_{M_{i}}\in W=\overline{V}$, which implies $M\in\overline{\overline{V}}=\overline{V}=W$ and hence $M\in\mathcal{G}$.

By the assumption above, $\mu$ is $\sigma$-finite. Hence, $X=\bigcup_{n\in\mathbb{N}}X_{n}$ with each $X_{n}$ of finite measure and $X_{n}\subset X_{n+1}$ for all $n\in\mathbb{N}$. By applying the above to $M\cap\left(X_{n}\times X_{n}\right)$ for the restricted measure $\mu|_{X_{n}}$, we see $M\cap\left(X_{n}\times X_{n}\right)\in V$ for all $n\in\mathbb{N}$ and $M\in\Omega\otimes\Omega$ with $\chi_{M}\in L^{p,q}$. But $\chi_{M\cap\left(X_{n}\times X_{n}\right)}\xrightarrow[n\rightarrow\infty]{}\chi_{M}$ pointwise and $$ \left|\chi_{M\cap\left(X_{n}\times X_{n}\right)}-\chi_{M}\right|\leq\chi_{M}, $$ so that dominated convergence yields $\left\Vert \chi_{M\cap\left(X_{n}\times X_{n}\right)}-\chi_{M}\right\Vert _{L^{p,q}}\xrightarrow[n\rightarrow\infty]{}0$. As above, this implies the claim. $\square$

For the proof of the denseness claimed above, take any $k\in L^{p,q}$. As $k$ is $\Omega\otimes\Omega$ measurable, there is a sequence $\left(k_{n}\right)_{n\in\mathbb{N}}$ of the form $k_{n}=\sum_{i=1}^{m_{n}}\alpha_{i}^{\left(n\right)}\chi_{M_{i}^{\left(n\right)}}$ with $M_{i}^{\left(n\right)}\in\Omega\otimes\Omega$ and $\alpha_{i}^{\left(n\right)}\in\mathbb{C}$. We can take the $\left(M_{i}^{\left(n\right)}\right)_{i=1,\dots,m_{n}}$ to be pairwise disjoint for all $n\in\mathbb{N}$ and $\alpha_{i}^{\left(n\right)}\neq0$. Furthermore, we can replace $M_{i}^{\left(n\right)}$ by $$ M_{i}^{\left(n\right)}\cap\left\{ \left(x,y\right)\mid\left|k_{n}\left(x,y\right)\right|\leq2\left|k\left(x,y\right)\right|\right\} , $$ so that $\left|k_{n}\left(x,y\right)\right|\leq2\left|k\left(x,y\right)\right|$ holds for all $\left(x,y\right)$ (check that still $k_{n}\left(x,y\right)\to k\left(x,y\right)$).

By dominated convergence again, this yields $\left\Vert k_{n}-k\right\Vert _{L^{p,q}}\xrightarrow[n\rightarrow\infty]{}0$ and the disjointness of $\left(M_{i}^{\left(n\right)}\right)_{i=1,\dots,m_{n}}$ also implies $\chi_{M_{i}^{\left(n\right)}}\in L^{p,q}$ for all $i,n$, so that we can approximate the $\chi_{M_{i}^{\left(n\right)}}$ by finite linear combinations of "rectangular" indicator functions as above. This completes the proof.

PhoemueX
  • 36,211
0

Here is another solution to this old problem.

Assume that $(X,\Sigma,\mu)$ is $\sigma$-finite and countably generated. That last assumption means that there is a countable collection $\mathcal{C}$ of subsets of $X$ such that $\sigma(\mathcal{C})$ and that $X=\bigcup_nC_n$ for $C_n\in\mathcal{C}$ and $\mu(C_n)<\infty$. A consequence of this assumption is that for any $1\leq p<\infty$, $L_p(\mu)$ is separable.

Recall that for $1<p<\infty$, $(L_q(\mu))^*=L_q(\mu)$ where $\frac1p+\frac1q=1$ (this also holds for $p=1$ when $\mu$ is $\sigma$-finite). For $1<p<\infty$, we show that the linear map $K$ on $L_q(\mu)$ defined by $$Kg(y)=\int_Xk(x,y)\,g(x)\,\mu(dx)$$ is a compact operator from $L_q(\mu)$ to itself. From this, compactness of the transpose operator $K^\dagger: (L^q(\mu))^*\rightarrow(L^q(\mu))^*$ given by $$ \langle K^\dagger f, g \rangle=\int_X \Big(\int_X k(x,y) f(y)\,\mu(dy)\Big)\,\mu(dx)=\int_X\Big(\int_X k(x,y)\,g(x)\,\mu(dx)\Big)\,\mu(dy)=\langle f, Kg\rangle$$ where $(f,g)\in (L_q(\mu))^*\times L_q(\mu)$ follows from Schauder's theorem.

By Alaoglu's theorem, the closed ball $\overline{B}_q(0;r)=\{g\in L_q(\mu):\|g\|_q\leq r\}$ in $L_q(\mu)$ is $\sigma(L_q(\mu),L_p(\mu))$-compact. The separability of $L_p(\mu)$ implies that $\overline{B}_q(0;r)$ under the $\sigma(L_q(\mu),L_p(\mu))$-topology is metrizable; hence $\overline{B}_q(0;r)$ is $\sigma(L_q(\mu),L_p(\mu))$-sequentially compact, that is, for any sequence $(g_n:n\in\mathbb{N})\subset B_q(0;r)$, there exists a subsequence $(g_{n_k}:k\in\mathbb{N})$ and $g\in L_p(\mu)$ such that $g_{n_k}\xrightarrow{k\rightarrow\infty}g$ in $\sigma(L_q(\mu),L_p(\mu))$.

Now, the assumption on $k$ implies that for $\mu$-a.a $y\in X$, the map $k_y: x\mapsto k(x,y)$ is in $L_p(\mu)$. Without loss of generality, we may assume that in fact for each $y\in X$, $k_y\in L_p(\mu)$.

Hölder's inequality yields that $|Kg(y)|\leq \|g\|_q\|k_y\|_p\in L_q$; hence $K$ is a bounded linear operator on $L_q(\mu)$ with $\|K\|\leq \Big(\int_X\Big(\int_X|k(x,y)|^p\,\mu(dx)\Big)^{q/p}\,\mu(dy)\Big)^{1/q}$. Furthermore, $$Kg_{n_k}(y)=\int_Xk(x,y) g_{n_k}(x)\,\mu(dx)\xrightarrow{k\rightarrow\infty}\int_Xk(x,y)g(x)\,\mu(dx)=Kg(y)$$ Also, $$|Kg_{n_k}(y)-Kg(y)|\leq\|g_{n_k}-g\|_q\|k_y\|_p\leq (a+\|g\|_q)\|k_y\|_p\in L_q(\mu)$$ Hence, by dominated convergence $$\|Kg_{n_k}-Kg\|_q\xrightarrow{n\rightarrow\infty}0$$ This shows that any sequence $h_n\in K(\overline{B}_q(0;r))$ has a convergent subsequence in $L_q(\mu)$; hence $K(\overline{B}_q(0;a))$ has compact closure in $L_q(\mu)$, that is, $K$ is a compact operator on $L_q(\mu)$


Comment: When $p=1$ and $\int_X\|k_y\|_\infty\,\mu(dy)<\infty$, $K$ may fail to be a compact operator on $L_1(\mu)$ (see Zaanen, A. C., Linear Analysis, Interscience, New York, 1952, Chapter 11, §2, Example D.) However, $K^2=K\circ K$ is compact (see here).

Mittens
  • 46,352