We have the Trace map defined by:
$$ \mathrm{Tr}\colon \mathbb{F}_q\rightarrow\mathbb{F}_q\colon x\mapsto x+x^p+x^{p^2}+\cdots+x^{p^{n-1}}, $$ where $q=p^n$. Now I have to prove that if $\mathrm{Tr}(y)=0$ then there exists a $x\in\mathbb{F}_q$ such that $x^p-x=y$.
I don't know how to tackle this problem. I need a hint to start with. Thanks.