If I have a cubic equation $x^3 + ax^2 + bx + c = 0$, what constraints exist on $a,b,c$ when we have three integer solutions?
How do I choose $a,b,c$ to force integer solutions?
If I have a cubic equation $x^3 + ax^2 + bx + c = 0$, what constraints exist on $a,b,c$ when we have three integer solutions?
How do I choose $a,b,c$ to force integer solutions?
$$\left{\begin{eqnarray} -a &=& x_1 + x_2 + x_3 \ b &=& x_1x_2 + x_1x_3 + x_2x_3 \ -c &=& x_1x_2x_3 \end{eqnarray}\right..$$
– Hakim Aug 01 '14 at 14:45