The goal is to study positive definite matrices.
Let ${ A \in \mathbb{C} ^{n \times n} }$ be a Hermitian matrix.
The goal is to express the positive definiteness criteria for ${ A }$ in terms of the entries of ${ A . }$
Say ${ A }$ is positive definite. Setting
$${ x = \begin{pmatrix} x _1 &\cdots &x _k &0 &\cdots &0 \end{pmatrix} ^T \neq 0 , }$$
we have
$${ x ^{\ast} A x = \sum _{i, j = 1} ^n A _{i, j} \overline{x _i} x _j = \sum _{i, j = 1} ^{k} A _{i, j} \overline{x _i} x _j > 0 . }$$
Hence the submatrix
$${ A _k := (A _{i, j}) _{i, j \in [k]} \, \text{ is positive definite}. }$$
Especially all the determinants ${ \det(A _k) > 0 . }$
Now say all the determinants ${ \det(A _k) > 0 , }$ where ${ A _k := (A _{i, j}) _{i, j \in [k]} . }$ Is ${ A }$ positive definite? It turns out yes.
We will proceed by induction on ${ n . }$ The base case ${ n = 1 }$ is clear. Let ${ n \geq 2 . }$ Let
$${ A = \begin{pmatrix} A _{n - 1} &v \\ v ^{\ast} &d \end{pmatrix} }$$
be such that all the determinants ${ \det(A _k) > 0 . }$ By induction hypothesis, ${ A _{n - 1} }$ is positive definite. We are to show
$${ \text{To show: } \quad A = \begin{pmatrix} A _{n - 1} &v \\ v ^{\ast} &d \end{pmatrix} \, \, \, \text{ is positive definite} . }$$
Consider the Schur complement factorisation of ${ A }$ wrt ${ A _{n - 1} , }$ namely
$${ \begin{pmatrix} A _{n - 1} &v \\ v ^{\ast} &d \end{pmatrix} = \begin{pmatrix} I &O \\ v ^{\ast} A _{n -1} ^{-1} &I \end{pmatrix} \begin{pmatrix} A _{n - 1} &O \\ O &d - v ^{\ast} A _{n - 1} ^{-1} v \end{pmatrix} \begin{pmatrix} I &A _{n - 1} ^{-1} v \\ O &I \end{pmatrix} . }$$
It suffices to show
$${ \text{To show: } \quad \begin{pmatrix} A _{n - 1} &O \\ O &d - v ^{\ast} A _{n - 1} ^{-1} v \end{pmatrix} \, \, \, \text{ is positive definite.} }$$
Taking determinants, we have
$${ d - v ^{\ast} A _{n - 1} ^{-1} v > 0 . }$$
Now for ${ x \neq 0 ,}$
$${ {\begin{aligned} &\, x ^{\ast} \begin{pmatrix} A _{n - 1} &O \\ O &d - v ^{\ast} A _{n - 1} ^{-1} v \end{pmatrix} x \\ = &\, \sum _{i, j = 1} ^{n} M _{i, j} \overline{x _i} x _j \\ = &\, \sum _{i, j = 1} ^{n - 1} (A _{n - 1}) _{i, j} \overline{x _i} x _j + \vert x _n \vert ^2 (d - v ^{\ast} A _{n - 1} ^{-1} v ) . \end{aligned}} }$$
If ${ x _n = 0 ,}$ the first term is ${ > 0 }$ and the second term is ${ 0 . }$ If ${ x _n \neq 0 , }$ the first term is ${ \geq 0 }$ and the second term is ${ > 0 . }$
Hence the Schur complement
$${ \begin{pmatrix} A _{n - 1} &O \\ O &d - v ^{\ast} A _{n - 1} ^{-1} v \end{pmatrix} \, \, \, \text{ is positive definite} }$$
as needed. ${ \blacksquare }$