I am trying to understand the a proof of the Sylvesters Criterion. In this proof we basically show that the a Hermitian matrix $A$ with only positive principal minors cannot be other than positive definite.
The proof starts by supposing that $A$ is non positive definite (PD) and then moves on by taking a linear combination of eigenvectors $v_{1,2}$ (for which $\lambda_{1,2}<0$) s.t. the last entry of it is $0$. Then using the definition of definiteness:
$v^TAv = \alpha^2v_1^TAv_1 + \beta^2v_2^TAv_2 = \alpha^2\lambda_1v_1 + \beta^2\lambda_2v_2<0$
After this point, the author concludes that the submatrix of $A [n-1 \times n-1]$ cannot be a positive minor, which contradicts the setup.
Hence the leading (n−1)×(n−1) principal submatrix of A is not positive definitive.
Thanks in advance