In general if I have that \begin{equation} \mathbb{E}(X)<\infty \end{equation} does this imply that $|X|<\infty$ a.s? An attempted proof:
Let $(\Omega,\mathbb{F},\mathbb{P})$ be a probability space and $K>0$ be a constant, then \begin{equation} \mathbb{E}(X)=\int_{\Omega}XdP\,=\int_{\{|X|\leq K \}}XdP\,+\int_{\{|X|>K\}}XdP\, <\infty \end{equation} Taking the limit as $K\rightarrow \infty$ \begin{equation} \int_{\{|X|>K\}}XdP\, \rightarrow 0 \end{equation} Struggling how to finish from here or posssibly this isn't true? Thanks!