73

I tried and got this

$$e=\sum_{k=0}^\infty\frac{1}{k!}=\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{k!}$$ $$n!\sum_{k=0}^n\frac{1}{k!}=\frac{n!}{0!}+\frac{n!}{1!}+\cdots+\frac{n!}{n!}=m$$ where $m$ is an integer. $$\lim_{n\to\infty}n\sin(2\pi en!)=\lim_{n\to\infty}n\sin\left(2\pi n!\sum_{k=0}^n\frac{1}{k!}\right)=\lim_{n\to\infty}n\sin(2\pi m)=\lim_{n\to\infty}n\cdot0=0$$

Is it correct?

M. Amin
  • 739

3 Answers3

70

(Added fix recommended by Craig in comments, and complete rewrite for clarity.)

We will use the following: $\lim_{x\rightarrow 0} {\frac{\sin x}{x}}=1$.

Lemma: If $\{x_n\}$ is a sequence (of non-zero values) that converges to $0$, then $$\lim_{n\rightarrow\infty}{n \sin{x_n}} = \lim_{n\rightarrow\infty} nx_n$$

Proof: Rewrite $n\sin{x_n} = n x_n \frac{\sin{x_n}}{x_n}$. The lemma follows since $\sin{x_n}/x_n \rightarrow 1$ by above.

Now, let $[[x]]$ be the fractional part of $x$. Let $e_n = [[n!e]]$.

Lemma: For $n>1$, $e_n\in (\frac{1}{n+1}, \frac{1}{n-1})$

Proof: $$n!e = K + \sum_{m=n+1}^\infty \frac{n!}{m!}$$

Where $K$ is an integer.

But for $m>n$, $\frac{n!}{m!} = \frac{1}{(n+1)(n+2)...m} < n^{n-m}$.

So $$\frac{1}{n+1}<\sum_{m=n+1}^\infty \frac{n!}{m!} < \sum_{m=n+1}^\infty n^{n-m} = \sum_{k=1}^\infty n^{-k}$$

But the right hand side is a geometric series whose sum is $\frac{1}{n-1}$.

So $n!e-K\in(\frac{1}{n+1}, \frac{1}{n-1})$, and, since $K$ is an integer, it must be $e_n=n!e-K$.

Theorem: $\lim_{n\rightarrow \infty} n \sin(2\pi n! e) = 2\pi$

Proof: By periodicity of $\sin$, $\sin(2\pi n! e) = \sin(2\pi e_n)$.

Letting $x_n = 2\pi e_n$, we see, from our first lemma:

$$\lim n \sin x_n = \lim n x_n$$

But $nx_n = 2\pi ne_n$, and, since $ne_n\in(\frac{n}{n+1},\frac{n}{n-1})$, we see that $ne_n\rightarrow 1$. So our limit is $2\pi$.

Thomas Andrews
  • 186,215
54

For given $n\geq2$ one has $$e\cdot n!=n!\sum_{k=0}^\infty{1\over k!}=n!\left(\sum_{k=0}^n{1\over k!}+\sum_{k=n+1}^\infty{1\over k!}\right)=m_n+r_n$$ with $m_n\in{\mathbb Z}$ and $${1\over n+1}<r_n={1\over n+1}+{1\over (n+1)(n+2)}+\ldots<{1\over n}+{1\over n^2}+\ldots={1\over n-1}\ .$$ Since $$a_n:=n\>\sin\left(2\pi\cdot e\cdot n!\right)=n\>\sin(2\pi r_n)=n\ \ 2\pi r_n\ {\sin(2\pi r_n)\over 2\pi r_n}$$ and $r_n\to 0$ it follows that $$\lim_{n\to\infty}a_n=2\pi\lim_{n\to\infty}\bigl(n\> r_n\bigr)=2\pi\ .$$

  • Funny, I thought that @Thomas already clearly explained this more than 3 years ago? – Did Nov 16 '14 at 19:01
  • 2
    @Did: The question was reposted by Community, I guess. At any rate Thomas' answer is not very streamlined, to say the least. What's the point in unearthing bygone questions when it is considered undecent to propose fresh answers? – Christian Blatter Nov 16 '14 at 20:09
  • The other answer looks allright to me. "Bygone questions" are "unearthed" because they have no accepted answer, and this is most often because the asker failed to follow the rules of the site (this one commented that "The rewrite is great. Thanks."), not because posted answers would be deficient. – Did Nov 16 '14 at 20:25
  • 8
    @Christian Blatter made it look so simpler. – PAMG Feb 22 '16 at 09:04
  • 5
    Yes, I think Christian's explanation is much clearer and short and beautiful. – DonAntonio Feb 22 '16 at 09:08
  • 2
    In your bound for $r_n$, you should have $\sum_{i=1}^\infty n^{-i} = (n-1)^{-1}$ rather than $\sum_{i=1}^\infty n^{-i} < (n-1)^{-1}$. – mlbaker Aug 14 '20 at 00:12
7

Let's add another solution, which never hurts.

$$\lim_{n\rightarrow \infty}n\cdot \sin\left(2\pi e\cdot n!\right)= \lim_{n\rightarrow \infty}n\cdot \sin \left(2\pi \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)n!\right)$$

Let's study now that series.

$$\sum_{k=0}^{\infty}\left(\frac{1}{k!}\right) n!= \left(\sum_{k=0}^n\frac{1}{k!}+\sum_{k=n+1}^{\infty}\frac{1}{k!}\right)n!=A+b_n$$

Where $A\in \mathbb{Z}$ and:

$$b_n=\frac{1}{n+1}+ o \left( \frac{1}{n} \right)$$

From this, we can say that:

$$\lim_{n\rightarrow \infty}n\cdot \sin(2\pi A +2\pi b_n) = \lim_{n\rightarrow \infty}n\cdot \sin(2\pi b_n)=\lim_{n\rightarrow \infty}n\cdot \sin \left(\frac{2\pi}{n+1}+o\left(\frac{1}{n}\right)\right)$$

And, by expanding it using Taylor formulas, we obtain that the limit is equal to:

$$\lim_{n\rightarrow \infty}n\cdot\frac{2\pi}{n+1}+o\left(\frac{1}{n}\right)=2\pi.$$