My question is motivated by a previous post about Implicational calculus
Having showed that Mendelson (A1) and (A2) axioms plus Peirce's law are a complete axiom set for implicational fragment of propositional calculus, where :
(A1) $\mathcal{B} \rightarrow ( \mathcal{C} \rightarrow \mathcal{B})$
(A2) $(\mathcal{B} \rightarrow ( \mathcal{C} \rightarrow \mathcal{D})) \rightarrow ((\mathcal{B} \rightarrow \mathcal{C}) \rightarrow (\mathcal{B} \rightarrow \mathcal{D}))$
and Peirce's law is :
$((\mathcal{A} \rightarrow \mathcal{B}) \rightarrow \mathcal{A}) \rightarrow \mathcal{A}$
I'm not able to derive (A3), where :
(A3) $(\lnot \mathcal{C} \rightarrow \lnot \mathcal{B}) \rightarrow ((\lnot \mathcal{C} \rightarrow \mathcal{B}) \rightarrow \mathcal{C})$.
In order to extend implicational calculus to full propositional calculus I assume that we need to introduce $\bot$, in order to define $\lnot \mathcal{A}$ as $\mathcal{A} \rightarrow \bot$.
But I'm still unable to find the solution.