Suppose the semantics of the $\rightarrow$ is this:
\begin{array}{cc|c}
p&q&p\rightarrow q\\
\hline
T&T&F\\
T&F&F\\
F&T&T\\
F&F&F\\
\end{array}
This is of course not the normal semantics for the $\rightarrow$, but that's just the point: syntax doesn't fix semantics, so we are free to play with the semantics.
Now let's look at your two axioms:
\begin{array}{cc|ccccc}
p&q&p&\rightarrow &(q &\rightarrow &p)\\
\hline
T&T&T&\color{red}F&T&F&T\\
T&T&T&\color{red}F&F&T&T\\
T&T&F&\color{red}F&T&F&F\\
T&T&F&\color{red}F&F&F&F\\
\end{array}
\begin{array}{ccc|ccccccccccccc}
p&q&r&(p&\rightarrow & (q & \rightarrow & r) & ) \rightarrow ( & (p & \rightarrow & q) & \rightarrow & (p & \rightarrow & r))\\
\hline
T&T&T&T&F&T&F&T&\color{red}F&T&F&T&F&T&F&T\\
T&T&F&T&F&T&F&F&\color{red}F&T&F&T&F&T&F&F\\
T&F&T&T&F&F&T&T&\color{red}F&T&F&F&F&T&F&T\\
T&F&F&T&F&F&F&F&\color{red}F&T&F&F&F&T&F&F\\
F&T&T&F&F&T&F&T&\color{red}F&F&T&T&F&F&T&T\\
F&T&F&F&F&T&F&F&\color{red}F&F&T&T&F&F&F&F\\
F&F&T&F&T&F&T&T&\color{red}F&F&F&F&T&F&T&T\\
F&F&F&F&F&F&F&F&\color{red}F&F&F&F&F&F&F&F\\
\end{array}
OK, so we see that these two axioms are always false, i.e. they are contradictions (I highlighted the main connective). Moreover, if you look back at how we defined the semantics for the $\rightarrow$, you'll find that given that whenever $p \rightarrow q$ is $F$, and $p$ is $F$, $q$ will always be $F$ as well. This means that with this semantics, if you start out with any (instance of) the axioms, and the only inference rule you have is Modus Ponens, then the only resulting statements will have to be contradictions.
OK, but is $((p \rightarrow \bot) \rightarrow \bot) \rightarrow p$ a logical contradiction under this semantics (and here I used $\bot$ as the statement that is always $F$)? Well, let's see:
\begin{array}{c|ccccccc}
p&((p & \rightarrow & \bot) & \rightarrow & \bot ) & \rightarrow & p\\
\hline
T&T&F&F&F&F&\color{red}T&T\\
F&F&F&F&F&F&\color{red}F&F\\
\end{array}
No, it is not. Hence, it can not be inferred from the two axioms and Modus Ponens alone.