Let $f(z)=\sum_{k=0}^na_kz^k$ be a polynomial with coefficients in $\mathbb{C}$. Suppose $\deg f\geq 1$. Prove for any $R>0$,
\begin{equation*} \frac{1}{2\pi i}\int_{|z|=R}z^{n-1}|f(z)|^2dz=a_0\bar{a_n}R^{2n}. \end{equation*}
How to compute out this equation?