Let $f$ have power series $f(z) = \sum_{n=1}^\infty a_n z^n$ in $D$, then prove that $\mathrm{area}\, f(D) = \sum_{n=1}^\infty n \,|a_n|^2$.
Note: We define $\mathrm{area}\, S = \iint_S \mathrm{d}x\,\mathrm{d}y$.
I presume the way to do this is to take the integral $$\iint_{f(D)} \mathrm{d}x\,\mathrm{d}y = \iint_D \mathbf{J}_f (x+iy) \,\mathrm{d}x\,\mathrm{d}y = \int_0^1 \int_0^{2\pi} r \mathbf{J}_f (r e^{i \theta}) \mathrm{d}\theta\,\mathrm{d}r,$$ and letting $\gamma_r : [0,2\pi]\to\Bbb{C}, \,\gamma_r (\theta) = r e^{i\theta},\, \gamma_r '(\theta) = i\gamma_r (\theta),$ then we get $$\mathrm{area}\,f(D) = \int_0^1 \int_{\gamma_r}\frac{\lvert f'(z)\rvert^2 \bar{z}}{ir}\mathrm{d}z\,\mathrm{d}r.$$ Unfortunately, this approach seems to be a dead end. I think I'm meant to use Cauchy's Formula somewhere, but I can't see where that might be useful in this kind of question.