This is a list of homotopy groups which I (as a physics researcher) encounter when studying magnetic monopole under certain configuration of gauge field profiles.
\begin{gather} \pi_2(SU(2)/U(1)) \simeq \pi_2(S^2) \simeq Z.\\ \pi_1(SU(2)/U(1)) \simeq \pi_1(S^2) \simeq 0\\ \pi_1(U(1)/Z_N) \simeq \pi_1(S^1) \simeq Z\\ \pi_1(SU(2)/Z_N) \simeq Z_N ?\\ \pi_2(SU(2)/Z_N) \simeq ?\\ \pi_n(SU(2)/Z_N) \simeq ? \end{gather}
I suppose I can derive $(SU(2)/U(1))\simeq S^2$ and $U(1)/Z_N \simeq U(1) \simeq S^1$. So I can understand the first threes(?).
How about:
(a)$\pi_1(SU(2)/Z_N) \simeq Z_N$?
(b)$\pi_2(SU(2)/Z_N) \simeq $?
(b)$\pi_n(SU(2)/Z_N) \simeq $?
(is that $\pi_2(SU(2)/Z_N) \simeq Z \times Z_N$? is that $\pi_3(SU(2)/Z_N) \simeq 0$?)
Any explanation may help? Thank you.