3

Find the value

$$F(x)=\int_{0}^{x}\left(\dfrac{1}{2}-\{t\}\right)dt$$ where$\{x\}=x-[x]$

my try: since $$F(x)=\int_{0}^{x}\left(\dfrac{1}{2}-t+[t]\right)dt$$ when

$$k-1\le t<=k,[t]=k-1,k\in Z$$ because $x$ is not integer,and maybe $x\to \infty$ so follow I can't.Thank you

math110
  • 94,932
  • 17
  • 148
  • 519

1 Answers1

6

Hint

Let $[x]=p$ then write $$\int_0^x f(t)dt=\sum_{k=0}^{p-1}\int_k^{k+1}f(t)dt+\int_p^x f(t)dt$$

Added

$$\int_0^x[t]dt=\sum_{k=0}^{p-1}\int_k^{k+1}[t]dt+\int_p^x [t]dt=\sum_{k=0}^{p-1}\int_k^{k+1}k\ dt+\int_p^x p\ dt\\=\sum_{k=0}^{p-1}k+p(x-p)=\frac{p(p-1)}{2}+p(x-p)$$

There's no problem to calculate the integral $$\int_0^x\left(\frac{1}{2}-t\right) dt$$ and you have $F(x)$.