Find the value
$$F(x)=\int_{0}^{x}\left(\dfrac{1}{2}-\{t\}\right)dt$$ where$\{x\}=x-[x]$
my try: since $$F(x)=\int_{0}^{x}\left(\dfrac{1}{2}-t+[t]\right)dt$$ when
$$k-1\le t<=k,[t]=k-1,k\in Z$$ because $x$ is not integer,and maybe $x\to \infty$ so follow I can't.Thank you