Question:
let
$$f(t)=\int_0^t\left(\{x\}-\dfrac{1}{2}\right)dx$$ where $\{t\}$ is the fractional part of $t$,
then find this integral value
$$I=\int_0^{+\infty}\dfrac{f(t)}{1+t^2}dt$$
My try: I have $$f(t)=\int_0^t\left(\{t\}-\dfrac{1}{2}\right)dt=\dfrac{1}{2}\{t\}(\{t\}-1)$$
also can see:How find this integral $\int_{0}^{x}\left(\frac{1}{2}-\{t\}\right)dt$ so $$I=\dfrac{1}{2}\int_0^{+\infty}\dfrac{\{t\}(\{t\}-1)}{1+t^2}dt$$ so $$\sum_{n=0}^{+\infty}\int_n^{n+1}\dfrac{\{t\}(\{t\}-1)}{1+t^2}dt=\sum_{n=1}^{\infty}\int_n^{n+1}\dfrac{(t-n)(t-n-1)}{t^2+1}dt$$ since $$\int_n^{n+1}\dfrac{(t-n)(t-n-1)}{t^2+1}dt=\left(1-\dfrac{2n+1}{2}\ln{\dfrac{(n+1)^2+1}{n^2+1}}+(n^2+n-1)(\arctan{(n+1)}-\arctan({n})\right)$$ so $$I=\sum_{n=0}^{\infty}\left(1-\dfrac{2n+1}{2}\ln{\dfrac{(n+1)^2+1}{n^2+1}}+(n^2+n-1)(\arctan{(n+1)}-\arctan({n}))\right)$$
and this integral $I$ is convege, because $2f(t)=\{t\}(\{t\}-1)$ is bounded so and $$\int_0^{+\infty}\dfrac{1}{1+t^2}dt=\dfrac{\pi}{2}$$ then I can't find this sum,
Thank you very much!