Let $a,b,c $ are non-negative real numbers, and $a+b+c=3$. How to prove inequality $$ ab^2+bc^2+ca^2\le 4.\tag{*} $$
In other words, if $a,b,c$ are non-negative real numbers, then how to prove inequality $$ 27(ab^2+bc^2+ca^2)\le 4(a+b+c)^3.\tag {**} $$ $\color{gray}{\mbox{(Without using "universal" Lagrange multipliers method).}}$
Thanks!
$$ \frac{a^3+b^3+b^3}3 \ge ab^2\implies 3ab^2\le a^3+2b^3 $$
$$3\sum ab^2\le 4(a^3+b^3+c^3)$$
– lab bhattacharjee Nov 14 '13 at 13:53