Proof.
We will prove that $24$ is the maximal value and attained at $a=b=c=1.$
I give a proof based on your idea to prove$$a^3b^2+b^3c^2+c^3a^2+7 (ab+bc+ca)\le 24.$$
Now, let the notation $a+b+c=p=3; ab+bc+ca=q; abc=r.$
By your thought progress, we'll prove $$3q^2-(18+q)r+q(a-b)(b-c)(a-c)+14q\le 48.\tag{*}$$
Notice that we already have the following identity \begin{align*}
(a-b)^2(b-c)^2(a-c)^2&=p^2q^2-4q^3+2pr(9q-2p^2)-27r^2\\&=9q^2-4q^3+54r(q-2)-27r^2\\&=4(3-q)^3-27(q-2-r)^2\\&\ge 0.
\end{align*}
Also, for all $a,b,c\in R$ $$(a-b)(b-c)(a-c)\le \sqrt{(a-b)^2(b-c)^2(a-c)^2}.$$Thus, it's enough to prove the $(*)$ according $$3q^2-(18+q)r+q\sqrt{4(3-q)^3-27(q-2-r)^2}+14q-48\le0.\tag{**}$$
We split $(**)$ into two cases
- $0\le q\le \dfrac{24}{11}.$
Apply the well-known result: $a^2b+b^2c+c^2a+abc\le \dfrac{4}{27}(a+b+c)^3,$ which was discussed here, we obtain$$a^3b^2+b^3c^2+c^3a^2\le (ab+bc+ca)(a^2b+b^2c+c^2a)\le 4(ab+bc+ca).$$It means $$a^3b^2+b^3c^2+c^3a^2+7 (ab+bc+ca)\le 11 (ab+bc+ca)\le 24.$$
- $\dfrac{24}{11}\le q\le 3.$
Let $0\le t=3-q\le \dfrac{9}{11}$ and $s=q-2-r.$ It implies $q=3-t; r=1-s-t.$
The $(**)$ turns out $$3(3-t)^2-(21-t)(1-s-t)+14(3-t)+(3-t)\sqrt{4t^3-27s^2}-48\le 0,$$or $$10t-2t^2-s(21-t)\ge (3-t)\sqrt{4t^3-27s^2}\ge 0.$$It is equivalent to$$[10t-2t^2-s(21-t)]^2- (3-t)^2(4t^3-27s^2)\ge 0,$$or $$[(21-t)^2+27(3-t)^2]s^2-2(10t-2t^2)(21-t)s+(10t-2t^2)^2-4t^3(3-t)^2\ge 0. \tag{***}$$
Can you go futher ?
We see that $(***)$ is a quadratic of polynomial according $s.$
Thus, it's enough to prove $$\Delta^{'}_{s}=(10t-2t^2)^2(21-t)^2-[(10t-2t^2)^2-4t^3(3-t)^2][(21-t)^2+27(3-t)^2]\le 0,$$
or $$27(3-t)^2(10t-2t^2)^2- 4t^3(3-t)^2[(21-t)^2+27(3-t)^2]\ge0$$
$$\iff 27(5-t)^2-27t(3-t)^2-t(21-t)^2\ge 0,$$
which is rewritten as $$f(t)=-28t^3+231t^2-954t+675\ge 0, t\in\left[\frac{9}{11};3\right]$$where $$f'(t)=-2(42t^2-231t+477)<0, \forall t\in R.$$It means that $$f(t)>f\left(\frac{9}{11}\right)>0.$$
The proof is done.