Let $f(x) = \cos(2x)$ and let $T_n$ be the $n$-th Taylor polynomial of $f$ centered at $1$. Find an $n$ such that $$ |\cos(2.5) - T_n(1.25)| \leq 10^{-3}.$$
My attempt,
By the Taylor polynomial error bound theorem $$ |\cos(2(1.25)) - T_n(1.25)| \leq \frac{K|1.25 - 1|^{n+1}}{(n+1)!} = \frac{K}{4^{n+1}(n+1)!} $$ where $K$ is a number satisfying $|f^{(n+1)}(x)| \leq K$ on the interval $[1, 1.25]$.
Note that \begin{align*} f(x) &= \cos(2x) \\ f'(x) &= -2\sin(2x) \\ f''(x) &= -2^2 \cos(2x) \\ f^{(3)}(x) &= 2^3 \sin(2x) \end{align*}
and so $|f^{(n+1)}(x)| = 2^{n+1}|\sin(2x)|$ or $|f^{(n+1)}(x)| = 2^{n+1}|\cos(2x)|$ depending on the parity of $n$. Since sine and cosine are uniformly bounded in absolute value by 1, $|f^{(n+1)}(x)| \leq 2^{n+1}$ and so we can take $K = 2^{n+1}$. And we get $$ |\cos(2(1.25)) - T_n(1.25)| \leq \frac{2^{n+1}}{4^{n+1}(n+1)!} = \frac{1}{2^{n+1}(n+1)!}. $$
I need help to finish the question.