Bumblebee

1
reputation

2nd year student at LSE studying Actuarial Science. Still heavily invested in studying pure mathematics.

My current age is $$ \sum_{n=1}^\infty \left[ \frac{(-1)^n}{n} \ln\left(1 + \frac{1}{n}\right) + \frac{H_n}{n^2} - \frac{1}{n(n+1)(n+2)} + \frac{\zeta(2)}{(n+1)^2} - \frac{(-1)^n}{n 2^n} + \frac{1}{\binom{2n}{n} n^2} - \frac{\zeta(3)}{(n+2)^3} + \frac{\operatorname{Li}_2\left(\frac{1}{n+1}\right)}{n} - \frac{H_n^{(2)}}{n} + \frac{(-1)^n \ln n}{n^2} + \frac{1}{n(n+1)} \ln\left(1 + \frac{1}{n}\right) \right] + 20 $$