We have
$$X+Y+Z=\pi$$
So the probability in question 1 is equivalent to
$$P_2=\frac{\int_{0}^{\pi}\int_{0}^{\pi-X}\mathbf{1}_{X^2+Y^2>(\pi-X-Y)^2}\,\mathrm dY\,\mathrm dX}{\int_{0}^{\pi}\int_{0}^{\pi-X}1\,\mathrm dY\,\mathrm dX}=\frac{2}{\pi^2}\int_{0}^{\pi}\int_{0}^{\pi-X}\mathbf{1}_{X^2+Y^2>(\pi-X-Y)^2}\,\mathrm dY\,\mathrm dX$$
Now we analyze the indicator function
$$X^2+Y^2>(\pi-X-Y)^2$$
$$X^2+Y^2>\pi^2+X^2+Y^2-2\pi X-2\pi Y+2XY$$
$$Y(2X-2\pi)-2\pi X+\pi^2<0$$
$$Y>\frac{\pi^2-2\pi X}{2\pi-2X}$$
When $X\le\frac{\pi}{2}$, the lower bound is okay, otherwise it must be improved to $0$. Therefore
$$P_2=\frac{2}{\pi^2}\left(\int_{0}^{\pi/2}\pi-X-\frac{\pi^2-2\pi X}{2\pi-2X}\,\mathrm dX+\int_{\pi/2}^{\pi}\pi-X\,\mathrm dX\right)$$
The remaining integrals are easy to deal with.
Similarly, the probability in question 2 is equivalent to
$$1-P_a=\frac{2}{\pi^2}\int_{0}^{\pi}\int_{0}^{\pi-X}\mathbf{1}_{X^a+Y^a\le (\pi-X-Y)^a}\,\mathrm dY\,\mathrm dX$$
To deal with the indicator function, we consider
$$x=\frac{X}{\pi-X-Y},y=\frac{Y}{\pi-X-Y}$$
The mapping $(X,Y)\mapsto(x,y)$ is bijective onto the set of pairs $(x,y)\in\mathbb{R}^2$ satisfying $x,y>0$. And the inverse is
$$X=\frac{\pi x}{x+y+1},Y=\frac{\pi y}{x+y+1}$$
Therefore the Jacobian determinant is
$$\frac{\pi(y+1)}{(x+y+1)^2}\cdot\frac{\pi(x+1)}{(x+y+1)^2}-\left(-\frac{\pi x}{(x+y+1)^2}\right)\left(-\frac{\pi y}{(x+y+1)^2}\right)=\frac{\pi^2}{(x+y+1)^3}$$
$$\implies 1-P_a=2\int_{0}^{\infty}\int_{0}^{\infty}\frac{\mathbf{1}_{x^a+y^a\le 1}}{(x+y+1)^3}\,\mathrm dy\,\mathrm dx=2\int_{0}^{1}\int_{0}^{\sqrt[a]{1-x^a}}\frac{1}{(x+y+1)^3}\,\mathrm dy\,\mathrm dx\\=\int_{0}^{1}\frac{1}{(x+1)^2}-\frac{1}{\left(x+\sqrt[a]{1-x^a}+1\right)^2}\,\mathrm dx=\frac{1}{2}-\int_{0}^{1}\frac{1}{\left(x+\sqrt[a]{1-x^a}+1\right)^2}\,\mathrm dx$$
$$\implies P_a=\frac{1}{2}+\int_{0}^{1}\frac{1}{\left(x+\sqrt[a]{1-x^a}+1\right)^2}\,\mathrm dx$$
WolframAlpha does not give closed form when $a=3$, so I guess the final integral doesn't have a closed form.