Let $(x,y,z)$ be the sides of a triangle whose vertices are uniformly random on the circumference of a circle. Experimental data using a simulation with $10^9$ trails for each tested value of $a \ge 1$ suggests that:
When $a \ge 1$ then the probability that $x^a + y^a \ge z^a$ is $P\left(x^a + y^a \ge z^a\right) = \frac{2}{3} + \frac{1}{3a^2}$, or equivalently if $x \le y \le z$. Then $P\left(x^a + y^a \ge z^a\right) = \frac{1}{a^2}$.
Can this Conjecture be proved or disproved? Related question.
Julia source code
using Random
step = 10^9
while true
a = 1
while true
f = 0
for _ in 1:step
angles = rand(3) .* 6.283185307179586
vertices_x = cos.(angles)
vertices_y = sin.(angles)
push!(vertices_x, vertices_x[1])
push!(vertices_y, vertices_y[1])
x_diff = diff(vertices_x)
y_diff = diff(vertices_y)
side_lengths = sqrt.(x_diff.^2 .+ y_diff.^2)
x, y, z = side_lengths
if x^a +y^a >= z^a
f += 1
end
end
prob = f/step
println((a, prob, prob / (2/3*(1 + 1/2/a^2))))
a = round(a + 0.1, digits=10)
end
end



