Complex contour solution
1. Do the substitution: $$\int_{0}^{1}\frac{\sin\pi x}{\left(1-x\right)^{x}x^{1-x}}dx=\left|x=\frac{1}{1+e^{t}};\ \ dx=-\frac{e^{t}dt}{\left(1+e^{t}\right)^{2}}\right|=$$ $$=\int_{-\infty}^{+\infty}\frac{\sin\left(\frac{\pi}{1+e^{t}}\right)}{\left(1-\frac{1}{1+e^{t}}\right)^{\frac{1}{1+e^{t}}}\left(\frac{1}{1+e^{t}}\right)^{1-\frac{1}{1+e^{t}}}}\frac{e^{t}dt}{\left(1+e^{t}\right)^{2}}=\int_{-\infty}^{+\infty}\sin\left(\frac{\pi}{1+e^{t}}\right)\frac{e^{t-\frac{t}{1+e^{t}}}}{1+e^{t}}dt=$$
$$=\lim_{R\to\infty}\ \operatorname{Im}\int_{-R}^{+R}\exp\left(\frac{i\pi-t}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}$$
2. Build the contour and analyse the special points:
$L_1=t,~~ L_2=t + 2\pi i,~~t\in[-R,+R];\quad\quad l_1=R+it,~~l_2=-R+it,~~t\in [0, 2\pi]$
There is only one simple pole in the contour $z=i\pi$
3. Residue and integral estimates:
$$\oint _C \exp\left(\frac{i\pi-z}{1+e^{z}}\right)\frac{dz}{1+e^{-z}}=2\pi i\cdot \lim_{z\to i\pi}\exp\left(\frac{i\pi-z}{1+e^{z}}\right)\frac{z-i\pi}{1+e^{-z}}=2\pi ei\cdot \lim_{z\to i\pi}\frac{z-i\pi}{1+e^{-z}}=2\pi ei$$
$$\int_{L_{1}}^{\ }=\int_{-R}^{+R}\exp\left(\frac{i\pi-t}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}$$
$$\int_{L_{2}}^{\ }=\int_{-R}^{+R}\exp\left(\frac{-i\pi-t}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}$$
In the limit term $\int_{l_{1}}^{\ }=2\pi i$ and $\int_{l_{2}}^{\ }=-2\pi i$
4. Result:
$$\int_{-R}^{+R}\exp\left(\frac{i\pi-t}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}+2\pi i-\int_{-R}^{+R}\exp\left(\frac{-t-\pi i}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}+2\pi i=2\pi ei$$
$$2i\int_{-R}^{+R}\left[\frac{\exp\left(\frac{i\pi}{1+e^{t}}\right)-\exp\left(\frac{-\pi i}{1+e^{t}}\right)}{2i}\right]\exp\left(\frac{-t}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}=2\pi ei-4\pi i$$
$$R\to \infty:~~\int_{-\infty}^{+\infty}\sin\left(\frac{\pi}{1+e^{t}}\right)\exp\left(\frac{-t}{1+e^{t}}\right)\frac{dt}{1+e^{-t}}=\pi\left(e-2\right)$$
Via step 1:
$$\int_{0}^{1}\frac{\sin\pi x}{\left(1-x\right)^{x}x^{1-x}}dx=\pi e - 2\pi$$
The main question
Is it possible to find the value of the integral without complex numbers, or at least without contour integration, without resorting to the methods presented on the linked above page? I have no idea how to approach the solution.