Question how to evaluate
$$\int_0^{\pi/6}\arcsin\Bigl(\sqrt{\cos(3\psi)\cos\psi}\Bigr)\,d\psi.$$
Attempt:
Let the integral be $I$. We have $$I = \int_0^{\pi/6}\arcsin\Bigl(\sqrt{\cos(3\psi)\cos\psi}\Bigr)\,d\psi.$$ First, we simplify the term inside the square root. Using the triple angle identity for cosine, $\cos(3\psi) = 4\cos^3\psi - 3\cos\psi$,(In order to simplify the integral) we get $$ \cos(3\psi)\cos\psi = (4\cos^3\psi - 3\cos\psi)\cos\psi = \cos^2\psi(4\cos^2\psi - 3). $$
The integral becomes $$ I = \int_0^{\pi/6}\arcsin\Bigl(\cos\psi\sqrt{4\cos^2\psi - 3}\Bigr)\,d\psi. $$
Alternatively, one can make the substitution $x=2\psi$, so $d\psi = dx/2$. The limits become $0$ to $\pi/3$. $$ I = \frac{1}{2} \int_0^{\pi/3} \arcsin\left(\sqrt{\cos(3x/2)\cos(x/2)}\right) dx. $$