There is no formula for the general term of the recurrence $\,x_{n+1}=x_n-x_n^2\,$
however, there is some specific results about
the sequence with $\,x_0=1/2.\,$
The denominator of $\,x_n\,$ is $\,2^{2^n}.\,$
OEIS sequence A076628
is the sequence of numerators of $\,x_n\,$
where $\,x_0=\frac12,\, x_1=\frac14,\,
x_2=\frac3{16},\,x_3=\frac{39}{256},\,
x_4=\frac{8463}{65536},\,\dots.$
In 1999 I found the result (where the constant $c$ depends on $x_0$)
$$x_n =1/( n + c + \log(n + c-1/2 + \log( \\
n + c-17/24 + \log(n + c-919/1152 + \dots )))). \tag{1}$$
With $y_n:=1/x_n$ and $L_n:=\log(n)$, then $y_{n+1}=y_n^2/(y_n-1).\;$
The general result is
$$ y_n = n + (c_0+c_1L_n) + (c_2+c_3L_n)/n + \\(c_4+c_5L_n+c_6L_n^2)/n^2 + \dots \tag{2}$$
for some constants $c_0,c_1,c_2,\dots$ which depend on $x_0$.
Now first replace $n$ with $n+1$ in $y_n$ to get
$$ y_{n+1}\!=\!n\!+\!(1\!+\!c_0\!+\!c_1L_n)\!+\!(c_1\!+\!c_2\!+\!c_3L_n)/n
\!+\!(c_4\!+\!c_3\!-\!c_2\!-\!c_1/2\!+\!(c_5\!-\!c_3)L_n\!+\!c_6L_n^2)/n^2 \!+\!\dots \tag{3}$$
while using the recursion gives
$$y_{n+1}\!=\!n\!+\!(1\!+\!c_0\!+\!c_1L_n)\!+\!(1\!+\!c_2\!+\!c_3L_n)/n
\!+\!(c_4\!-\!c_0\!+\!1\!+\!(c_5\!-\!c_1)L_n\!+\!c_6L_n^2)/n^2
\!+\!\dots \tag{4}$$
and equating the two expressions for $y_{n+1}$ we must have
$$c_1=c_3=1,c_2=c_0-1/2,c_5=3/2-c_0,c_6=-1/2,c_4=(-5+9c_0-3c_0^2)/6. \tag{5}$$
Making the substitutions for the constants we get
$$y_n\!=\!n\!+\!(c_0\!+\!L_n)\!+\!(c_0\!-\!1/2\!+\!L_n)/n\!
+\!((-5\!+\!9c_0\!-\!3c_0^2)/6+(3/2-c_0)L_n\!-\!1/2L_n^2)/n^2+\dots \tag{6}$$
and
$$x_n=1/n+(-c_0-\log n)/n^2+(c_0^2-c_0+1/2+ \\
(2c_0-1)\log n+(\log n)^2)/n^3+\dots \tag{7}$$
which still depends on $c_0$ which comes from $x_0$.