0

How I should deal with it? I’ve tried so far to find an obvious pattern finding some terms of the sequence.

$$x_{n+1}=x_n - x_{n}^2$$ $$x_0=\frac 12$$

benj2k1
  • 127

1 Answers1

4

There is no formula for the general term of the recurrence $\,x_{n+1}=x_n-x_n^2\,$ however, there is some specific results about the sequence with $\,x_0=1/2.\,$ The denominator of $\,x_n\,$ is $\,2^{2^n}.\,$ OEIS sequence A076628 is the sequence of numerators of $\,x_n\,$ where $\,x_0=\frac12,\, x_1=\frac14,\, x_2=\frac3{16},\,x_3=\frac{39}{256},\, x_4=\frac{8463}{65536},\,\dots.$

In 1999 I found the result (where the constant $c$ depends on $x_0$) $$x_n =1/( n + c + \log(n + c-1/2 + \log( \\ n + c-17/24 + \log(n + c-919/1152 + \dots )))). \tag{1}$$ With $y_n:=1/x_n$ and $L_n:=\log(n)$, then $y_{n+1}=y_n^2/(y_n-1).\;$ The general result is $$ y_n = n + (c_0+c_1L_n) + (c_2+c_3L_n)/n + \\(c_4+c_5L_n+c_6L_n^2)/n^2 + \dots \tag{2}$$ for some constants $c_0,c_1,c_2,\dots$ which depend on $x_0$. Now first replace $n$ with $n+1$ in $y_n$ to get $$ y_{n+1}\!=\!n\!+\!(1\!+\!c_0\!+\!c_1L_n)\!+\!(c_1\!+\!c_2\!+\!c_3L_n)/n \!+\!(c_4\!+\!c_3\!-\!c_2\!-\!c_1/2\!+\!(c_5\!-\!c_3)L_n\!+\!c_6L_n^2)/n^2 \!+\!\dots \tag{3}$$ while using the recursion gives $$y_{n+1}\!=\!n\!+\!(1\!+\!c_0\!+\!c_1L_n)\!+\!(1\!+\!c_2\!+\!c_3L_n)/n \!+\!(c_4\!-\!c_0\!+\!1\!+\!(c_5\!-\!c_1)L_n\!+\!c_6L_n^2)/n^2 \!+\!\dots \tag{4}$$ and equating the two expressions for $y_{n+1}$ we must have $$c_1=c_3=1,c_2=c_0-1/2,c_5=3/2-c_0,c_6=-1/2,c_4=(-5+9c_0-3c_0^2)/6. \tag{5}$$ Making the substitutions for the constants we get $$y_n\!=\!n\!+\!(c_0\!+\!L_n)\!+\!(c_0\!-\!1/2\!+\!L_n)/n\! +\!((-5\!+\!9c_0\!-\!3c_0^2)/6+(3/2-c_0)L_n\!-\!1/2L_n^2)/n^2+\dots \tag{6}$$ and $$x_n=1/n+(-c_0-\log n)/n^2+(c_0^2-c_0+1/2+ \\ (2c_0-1)\log n+(\log n)^2)/n^3+\dots \tag{7}$$ which still depends on $c_0$ which comes from $x_0$.

Somos
  • 37,457
  • 3
  • 35
  • 85