Attracted by the decent answer of the integral in the post $$ \int_0^1 \frac{\sin (\ln x)}{\ln x}\,\mathrm d x=\frac{\pi}{4}, $$ I want to go further with $$ I_2=\int_0^1 \frac{\sin ^2(\ln x)}{\ln ^2 x}\,\mathrm d x=I(1)$$ where $$ I(a)=\int_0^1 \frac{\sin ^2(a \ln x)}{\ln ^2 x}\,\mathrm d x $$ whose first and second derivatives w.r.t. $a$ are
$$ \begin{aligned} I^{\prime}(a) & =\int_0^1 \frac{2 \sin (a \ln x) \cos (a \ln x)}{\ln x}\,\mathrm d x \\ & =\int_0^1 \frac{\sin (2 a \ln x)}{\ln x}\,\mathrm d x \\ I^{\prime \prime}(a) & =2 \int_0^1 \cos (2 a \ln x)\,\mathrm d x \\ & =2 \Re \int_0^1 e^{2i a \ln x}\,\mathrm d x \\ & =2 \Re \int_0^1 x^{2 a i}\,\mathrm d x \\ & =2 \Re\left(\frac{1}{2 a i+1}\right) \\ & =\frac{2}{1+4 a^2} \end{aligned} $$ Integrating back $$ \begin{aligned} I^{\prime}(a) & = I^{\prime}(a)-I(0)\\&=\int_0^a \frac{2}{1+4 x^2}\,\mathrm d x\\& =\tan ^{-1}(2 a) \end{aligned} $$ Integrating once more yields
$$ \begin{aligned} I_2 & =I(1)-I(0) \\ & =\int_0^1 I^{\prime}(a)\,\mathrm d a \\ & =\int_0^1 \tan ^{-1}(2 a)\,\mathrm d a \\ & =\left[a \tan ^{-1}(2 a)\right]_0^1-\int_0^1 \frac{2 a}{1+4 a^2}\,\mathrm d a \\ & =\tan ^{-1} 2-\frac{1}{4}\left[\ln \left(1+4 a^2\right)\right]_0^1 \\ & =\tan ^{-1} 2-\frac{1}{4} \ln 5 \end{aligned} $$
My question
How do I tackle the integral $\int_0^1 \frac{\sin ^m(\ln x)}{\ln ^n x}\,\mathrm d x$?
Your comments and alternatives are highly appreciated.
nandm. I checked only for :{n,m}=1..100. – Mariusz Iwaniuk May 19 '25 at 07:29