As in the post by @quanto, we begin by enforcing the substitution $x\mapsto e^{-x}$ to reveal
$$\int_0^1 \frac{\sin(\log(x))}{\log(x)}\,dx=\int_0^\infty \frac{e^{-x}\sin(x)}{x}\,dx\tag1$$
Next, we will use the identity from the Laplace Transform (See This)
$$\int_0^\infty f(x)g(x)\,dx=\int_0^\infty \mathscr{L}\{f\}(s)\,\,\mathscr{L}^{-1}\{g\}(s)\,ds\tag2$$
Let $f(x)=e^{-x}\sin(x)$ and $g(x)=\frac1x$. Then, we see that
$$\mathscr{L}\{f\}(s)=\frac{1}{(s+1)^2+1}\tag3$$
and
$$\mathscr{L}^{-1}\{g\}(s)=1\tag4$$
Hence, using $(3)$ and $(4)$ in $(2)$ and applying to $(1)$ yields
$$\begin{align}
\underbrace{\int_0^\infty \frac{e^{-x}\sin(x)}{x}\,dx}_{\int_0^\infty f(x)g(x)\,dx}&=\underbrace{\int_0^\infty \frac{1}{(s+1)^2+1}\,ds}_{\int_0^\infty \mathscr{L}\{f\}(s)\,\,\mathscr{L}^{-1}\{g\}(s)\,ds}\\\\
&=\frac{\pi}{4}
\end{align}$$