Motivated by the fact that $$\int_{-1}^1\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\frac{\mathrm dx}x=4\int_\infty^\frac14\int_0^\infty\frac1{\cosh^4x+y}-\frac1{\sinh^4x+y}\mathrm dx\,\mathrm dy$$
I tried to think of $\displaystyle\int_1^\infty\ln\left(\frac{5x^2-1}{x^2+3}\right)\frac{\mathrm dx}{x^2-1}$ which can be converted into the following double integral by the substitution $\dfrac{x^2-1}{x^2+1}\to\operatorname{sech}2x$:
$$\begin{align}\int_0^\infty\ln\left(\frac{\cosh2x+1+\frac12}{\cosh2x-1+\frac12}\right)\mathrm dx&=\frac{\pi^2}4+\int_0^\frac122y\int_0^\infty\frac1{\cosh^2x+y^2}-\frac1{\sinh^2x+y^2}\mathrm dx\,\mathrm dy\\&=\frac{\pi^2}4+\int_0^\frac122y\int_0^\infty\frac{\operatorname{sech}^2x}{y^2+1-y^2\tanh^2x}-\frac{\operatorname{sech}^2x}{y^2+(1-y^2)\tanh^2x}\mathrm dx\,\mathrm dy\\&\overset{\tanh x\to x}=\frac{\pi^2}4+\int_0^\frac12\frac2y\int_0^1\frac1{1+\frac1{y^2}-x^2}-\frac1{1-y^2}\frac1{\frac{y^2}{1-y^2}+x^2}\mathrm dx\,\mathrm dy\\&=\frac{\pi^2}4+\int_0^\frac12\frac2{\sqrt{y^2+1}}\sinh^{-1}y-\frac2{\sqrt{1-y^2}}\cos^{-1}y\,\mathrm dy\\&=\ln^2\phi+\frac{\pi^2}9\end{align}$$
where $\phi=\frac{\sqrt5+1}2$, the golden ratio.
Is there any other method to evaluate this interesting integral? Any comments and alternative methods are highly appreciated.
$$I=\displaystyle\int_1^0\ln\left(\frac{\frac{5}{t^2}-1}{\frac{1}{t^2}+3}\right)\frac{1}{\frac{1}{t^2}-1}-\frac{1}{t^2},dt$$
$$I=\displaystyle\int_0^1\ln\left(\frac{5-t^2}{1+3t^2}\right)\frac{1}{1-t^2},dt$$
$$I=\int_0^1\frac{\ln(5-t^2)}{1-t^2},dt-\int_0^1\frac{\ln(1+3t^2)}{1-t^2},dt=\cdots$$ Then comes up Claude's idea
– Amrut Ayan Apr 03 '25 at 13:26