Let ${\bf A} \in {\Bbb R}^{n \times n}$ be a symmetric positive definite M-matrix whose non-diagonal entries are non-positive. Let ${\bf B} \in {\Bbb R}^{n \times n}$ be a diagonal matrix, whose diagonal entries are non-negative. Let ${\bf C} \in {\Bbb R}^{n \times n}$ also be a diagonal matrix. Let
$${\bf M} := \begin{bmatrix} \mathbf{A} & \mathbf{0} \newline \mathbf{0} & \mathbf{A} \newline \end{bmatrix} + \begin{bmatrix} -\mathbf{B} & \mathbf{C} \newline \mathbf{C} & \mathbf{B} \newline \end{bmatrix}$$
$${\bf N} := \begin{bmatrix} \mathbf{A} & \mathbf{0} \newline \mathbf{0} & \mathbf{A} \newline \end{bmatrix} + \begin{bmatrix} -\mathbf{B} & |\mathbf{C}| \newline |\mathbf{C}|& \mathbf{B} \newline \end{bmatrix}$$
Compared to $\mathbf{M}$, all the entries of $\mathbf{C}$ in $\mathbf{N}$ take their absolute values. Is the smallest eigenvalue of $\mathbf{N}$ always smaller than the smallest eigenvalue of $\mathbf{M}$?