The following proof uses a combination of the reduction modulo $2 \pi$ from River Li's answer and a concavity argument.
Let $x_1, \ldots, x_5$ be real numbers with $\sum_{k=1}^5 x_k = 2 \pi$. We want to show that $\sum_{k=1}^5 \sin(x_k) \le 5 \sin \left( \frac{2 \pi}{5}\right) $.
Case 1: $\sin(x_k) \le 0$ for some $k$. Then
$$
\sum_{k=1}^5 \sin(x_k) \le 4 < 5 \sin \left( \frac{2 \pi}{5}\right) \, .
$$
Case 2: $\sin(x_k) > 0$ for all $k$. Then
$$
x_k = y_k + 2 p_k \pi
$$
with $y_1, \ldots, y_5 \in (0, \pi)$ and $p_1, \ldots, p_5 \in \Bbb Z$. Using the concavity of the sine function on $(0, \pi)$ it follows that
$$
\sum_{k=1}^5 \sin(x_k) = \sum_{k=1}^5 \sin(y_k) \le 5 \sin \left( \frac{\sum_{k=1}^5 y_k}{5}\right) = 5 \sin \left( \frac{2 q \pi}{5}\right)
\le 5 \sin \left( \frac{2 \pi}{5}\right)
$$
with some $q \in \Bbb Z$, and that finishes the proof.
Equality holds if and only if all $y_k$ are equal and $q=1$, that is if
$$
x_k = \frac{2 \pi}{5} + 2 p_k \pi
$$
with integers $p_k$ satisfying $\sum_{k=1}^5 p_k = 0$.
This can be generalized as follows:
Let $x_1, \ldots, x_n$ ($n \ge 3$) be real numbers with $\sum_{k=1}^n x_k = 2 \pi$. Then
$$
\sum_{k=1}^n \sin(x_k) \le n \sin \left( \frac{2 Q\pi}{n}\right) \quad\text{with } Q = \left\lfloor \frac n4 + \frac 12 \right\rfloor \, .
$$
The bound is sharp.
Proof: Note that the integer $Q$ is chosen such that $\sin(2Q\pi/n)$ is as large as possible. As above we distinguish two cases.
Case 1: $\sin(x_k) \le 0$ for some $k$. Then $ \sum_{k=1}^n \sin(x_k) \le n-1 $ and it remains to show that
$$
n-1 \le n \sin \left( \frac{2 Q\pi}{n}\right) \, .
$$
This can be verified directly for $n=3, 4$ with $Q=1$. For $n\ge 5$ we have
$$
\left| \frac{2 Q\pi}{n} - \frac{\pi}{2} \right| \le \frac{\pi}{n}
$$
and therefore
$$
\sin \left( \frac{2 Q\pi}{n}\right) \ge \sin \left( \frac{\pi}{2}-\frac{\pi}{n}\right) = \cos\left( \frac{\pi}{n}\right)
\ge 1 - \frac{\pi^2}{2n^2} > 1 - \frac{1}{n} = \frac{n-1}{n} \, .
$$
Case 2: $\sin(x_k) > 0$ for all $k$. Then
$$
x_k = y_k + 2 p_k \pi
$$
with $y_1, \ldots, y_n \in (0, \pi)$ and $p_1, \ldots, p_n \in \Bbb Z$. Using the concavity of the sine function on $(0, \pi)$ it follows that
$$
\sum_{k=1}^n \sin(x_k) = \sum_{k=1}^n \sin(y_k) \le n \sin \left( \frac{\sum_{k=1}^n y_k}{n}\right) = n \sin \left( \frac{2 q \pi}{n}\right) \le n \sin \left( \frac{2 Q \pi}{n}\right)
$$
with some $q \in \Bbb Z$, the last inequality holds due to the choice of $Q$.
Equality holds for
$$
x_k = \frac{2 Q\pi}{n} + 2 p_k \pi
$$
with integers $p_k$ satisfying $\sum_{k=1}^n p_k = 1-Q$.
Remark: If $n \ge 7$ then the maximal value is not attained if all $x_k$ are equal. For example, if $n=7$ then $Q=2$ and the maximal value is $7 \sin(4 \pi/7)$, which is attained (for example) for
$$
x_1 = \cdots = x_6 = \frac{4\pi}{7} \, , \, x_7 = -\frac{10\pi}{7} \, .
$$
&\le 2|\sin x| + 2|\sin y| - \sin(2x + 2y). \end{align*}
– River Li Mar 13 '25 at 01:49