Using the method of Lagrange multipliers you immediately get to this.
Let me first define $g=a+b+c+d+e-2\pi=0$ then the lagrange function is $$L(a,b,c,d,\lambda)=E-\lambda g=\sin(a)+\sin(b)+\sin(c)+\sin(d)+\sin(e)-\lambda(a+b+c+d+e-2\pi)$$
Now for lagrange you need to compute all partial derivatives. $$\frac{\partial L}{\partial x}=\cos(x)-\lambda$$ for $x\in \{a,b,c,d\}$ and $$\frac{\partial L}{\partial \lambda}=a+b+c+d+e=2\pi$$ Then you only need to solve the system$$\frac{\partial L}{\partial x}=\cos(x)-\lambda=0\Leftrightarrow \cos(x)=\lambda$$ for $x\in \{a,b,c,d\}$ and you immediately get that $$a=b=c=d=e=\frac{2\pi}{5}$$
I hope this helps.