Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function satisfying $\lim_{x \to \infty} ( f(x) + f'(x) ) = 0.$ Prove that $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f'(x) = 0.$
I know this is a copy of this question, but I don't want to use L'Hopital because my teacher doesn't allow it. I tried the following, is this correct?
Let $h(x) := f(x)e^x$. Then $h'(x) = f'(x) e^x + e^x f(x)$. Thus
$h'(x) = e^x (f'(x) + f(x)).$
We know $\lim_{x \to \infty} ( f(x) + f'(x) ) = 0$, and so
$\Rightarrow |f'(x) + f(x)| < \epsilon$
$\Rightarrow -\epsilon < f' + f < \epsilon$
$\Rightarrow - \epsilon e^x < e^x (f' + f) < \epsilon e^x$
$\Rightarrow -\epsilon e^x < h'(x) < \epsilon e^x$
$\Rightarrow \int_{x_0}^{x} h'(t) \, dt < \epsilon \int_{x_0}^{x} e^t \, dt$
$h(x) - h(x_0) < \epsilon (e^x - e^{x_0}).$
Dividing by $e^x$, we see
$$\frac{h(x) - h(x_0)}{e^x} < \epsilon \left( 1 - \frac{e^{x_0}}{e^x} \right).$$
Since $\lim_{x \to \infty} \frac{e^{x_0}}{e^x} = 0$, we get $f(x) < \epsilon$. Similarly, we can show that $-\epsilon < f(x)$. Thus, by the Squeeze Theorem, $\lim_{x \to \infty} f(x) = 0$, and from this $\lim_{x \to \infty} f'(x) = 0$.