1

I've checked some questions, such as these, and I'm not understanding what's going on.

Does the complex conjugate of an integral equal the integral of the conjugate?

How to integrate with respect to $\overline{z}$

It seems that the common definition goes as such: $$\int\limits_{C}f(z)\,d\bar{z}=\overline{\int\limits_{C}\overline{f(z)}\,dz}$$

Here's the problem I'm having. Say we have two straight line segments, starting at $z=0$. The line $C^{+}$ ends at $1+i$, parameterised by $z=(1+i)t$ for $0\leq t\leq1$, and the line $C^{-}$ ends at $1-i$, parameterised by $z=(1-i)t$ for $0\leq t\leq1$. $$\int\limits_{C^{+}}z\,dz=\int\limits_{0}^{1}(1+i)t(1+i)dt=(1+i)^{2}\frac{1}{2}=i$$

Now I want to try the mirror. $$\int\limits_{C^{-}}\bar{z}\,d\bar{z}$$

I try to simply apply the above definition, supposing $\bar{z}$ to be a function of $z$.

$$\int\limits_{C^{-}}\bar{z}\,d\bar{z}=\overline{\int\limits_{C^{-}}\overline{\bar{z}}\,dz}=\overline{\int\limits_{C^{-}}z\,dz}=\overline{\int\limits_{0}^{1}(1-i)t(1-i)\,dt}=\overline{(1-i)^{2}\frac{1}{2}}=\overline{-i}=i$$

This clearly has to be completely wrong. $i$ and $-i$ are geometrically equivalent, so they're functionally indistinguishable. If you replace each $i$ with a $-i$ in an expression, it still holds true. We replaced the $i$ with $-i$ in $z\mapsto\bar{z}$, $dz\mapsto d\bar{z}$ and $C^{+}\mapsto C^{-}$, hence this integral must equal $-i$.

Looking at Martín-Blas Pérez Pinilla's answer does suggest the notion of a conjugate domain to integrate over, though the comment by user173262 just raises more confusion. Why should $\int\limits_{\gamma}f(z)\,dz=\int\limits_{\bar{\gamma}}f(\bar{z})\,d\bar{z}$? Surely, replacing all instances of $i$ with $-i$ should mean that the answers are conjugates, so if $\int\limits_{\gamma}f(z)\,dz=a+bi$, then $\int\limits_{\bar{\gamma}}f(\bar{z})\,d\bar{z}=a-bi$, suggesting that $\int\limits_{\gamma}f(z)\,dz=\overline{\int\limits_{\bar{\gamma}}f(\bar{z})\,d\bar{z}}$, no?

Or am I making some kind of mistake? Does integrating $d\bar{z}$ actually mean $\bar{z}$ is in the region of integration, instead of $z$? I.e. $\bar{z}\in C^{-}$ so $z\in C^{+}$. This would presumably fix the mistake, but wouldn't fully explain what's going on. When does $\bar{z}$ stop being a function of $z$? And wouldn't this just provide the definition of $\int\limits_{\gamma}f(z)\,d\bar{z}=\int\limits_{\bar{\gamma}}f(z)\,dz$?

In general then, for a curve $C$ and a function $f(z,\bar{z})$, and supposing we know how to integrate $dz$ through parameterisation and so on, how exactly do we formulate $$\int\limits_{C}f(z,\bar{z})\,d\bar{z}$$ as an integral integrated $dz$? Or should I be asking more general questions about complex 1-forms? As in, what is $$\int\limits_{C}\left(f(z,\bar{z})\,dz+g(z,\bar{z})\,d\bar{z}\right)$$

and why do $z$ and $\bar{z}$ act so unusually with respect to each other? Aren't they just a function of the other?

Darmani V
  • 723
  • 1
  • 10
  • try and think of all these integrals in terms of parametrizations rather than abstract definitions and things will be clearer - eg $\int_Czdz$ means that you parametrize $C$ by some $t \to f(t)$ where $t \in [0,1]$ say and $f(t) \in \mathbb C$ so $zdz=f(t)f'(t)dt$; conjugating means $t \to \overline {f(t)}$ and so on, hence in particular the curve of integration is not $C$ (as a geometric complex set) but its conjugate as you correctly supposed at some point; similar - though of course not exactly same - how usual real change of variables works in usual real integrals – Conrad Feb 11 '25 at 22:37

1 Answers1

1

It's not clear to me which is the main question, so I'll try to address most of the questions in a convenient order.

General Background

Throughout, I will suppose that:

  • $C$ is parametrized by $a(t)+ib(t)$ (for real $t$ from $0$ to $1$, for convenience) where $x(t)$ and $y(t)$ are real-valued.
  • $f(z)=u(z)+iv(z)$ where $u$ and $v$ are real-valued.

Note that \begin{align*}\int_{C}f(z)\,\mathrm{d}z &= \int_{C}\left(u\left(z\right)+iv\left(z\right)\right)\,\left(\mathrm{d}x+i\mathrm{d}y\right)\\ &=\int_{C}\left(u\left(z\right)\,\mathrm{d}x+iv\left(z\right)\,\mathrm{d}x+iu\left(z\right)\,\mathrm{d}y-v\left(z\right)\,\mathrm{d}y\right)\\ &=\int_{0}^{1}\left(u\left(a(t)+ib(t)\right)a'(t)+iv\left(a(t)+ib(t)\right)a'(t)\right.\\ &\phantom{=}\left.+iu\left(a(t)+ib(t)\right)b'(t)-v\left(a(t)+ib(t)\right)b'(t)\right)\,\mathrm{d}t\end{align*}


Conjugating the curve

Now, if we replace the curve $C$ by the conjugate curve $\overline{C}$ parametrized by $a(t)-ib(t)$, then we have:

\begin{align*}\int_{\overline{C}}f(z)\,\mathrm{d}z &= \int_{\overline{C}}\left(u\left(z\right)+iv\left(z\right)\right)\,\left(\mathrm{d}x+i\mathrm{d}y\right)\\ &=\int_{\overline{C}}\left(u\left(z\right)\,\mathrm{d}x+iv\left(z\right)\,\mathrm{d}x+iu\left(z\right)\,\mathrm{d}y-v\left(z\right)\,\mathrm{d}y\right)\\ &=\int_{0}^{1}\left(u\left(a(t)\boxed{-}ib(t)\right)a'(t)+iv\left(a(t)\boxed{-}ib(t)\right)a'(t)\right.\\ &\phantom{=}\left.\boxed{-}iu\left(a(t)\boxed{-}ib(t)\right)b'(t)\boxed{+}v\left(a(t)\boxed{-}ib(t)\right)b'(t)\right)\,\mathrm{d}t\end{align*}

There are a few ways to get to this output by modifying $\int_{C}f(z)\,\mathrm{d}z$. Certainly, changing the argument of $f$ from $z$ to $\overline{z}$ would be part of a fix. Aside from that, we can conjugate the output of $f$ to flip the signs of the two $v$ terms (which makes the $v$ term match but also makes the $iv$ term wrong), and then conjugate the output of the integral to flip the signs of the two $i$ terms. In symbols, we have:

\begin{align*}\overline{\int_{C}\overline{f(\overline{z})}\,\mathrm{d}z}&=\overline{\int_{C}\left(u\left(\overline{z}\right)-iv\left(\overline{z}\right)\right)\,\left(\mathrm{d}x+i\mathrm{d}y\right)}\\&=\overline{\int_{C}\left(u\left(\overline{z}\right)\,\mathrm{d}x-iv\left(\overline{z}\right)\,\mathrm{d}x+iu\left(\overline{z}\right)\,\mathrm{d}y+v\left(\overline{z}\right)\,\mathrm{d}y\right)}\\&=\int_{C}\left(u\left(\overline{z}\right)\,\mathrm{d}x+iv\left(\overline{z}\right)\,\mathrm{d}x-iu\left(\overline{z}\right)\,\mathrm{d}y+v\left(\overline{z}\right)\,\mathrm{d}y\right)\\&=\int_{0}^{1}\left(u\left(a(t)-ib(t)\right)a'(t)+iv\left(a(t)-ib(t)\right)a'(t)\right.\\&\phantom{=}\left.-iu\left(a(t)-ib(t)\right)b'(t)+v\left(a(t)-ib(t)\right)b'(t)\right)\,\mathrm{d}t\\&=\int_{\overline{C}}f(z)\,\mathrm{d}z\checkmark\end{align*}

To emphasize: \begin{equation}\int_{\overline{C}}f(z)\,\mathrm{d}z=\overline{\int_{C}\overline{f(\overline{z})}\,\mathrm{d}z}\tag{1}\end{equation}

(Note that this is very similar to copper.hat's answer.)


Integration with Respect to $\overline{z}$

General Definitions

What is $\int\limits_{C}\left(f(z,\bar{z})\,dz+g(z,\bar{z})\,d\bar{z}\right)$?

Just as $\mathrm dz$ is essentially a shorthand for $\mathrm dx+i\mathrm dy$, similarly $\mathrm d\overline z$ is a shorthand for $\mathrm dx-i\mathrm dy=\overline{\mathrm dz}$.

This allows us to write, for instance: \begin{align} &\phantom{=} \int_{C}f(z,\overline{z})\,\mathrm{d}z+g(z,\overline{z})\,\mathrm{d}\overline{z}\\ &=\int_{C}f(z,\overline{z})\,\left(\mathrm{d}x+i\mathrm{d}y\right)+g(z,\overline{z})\,\left(\mathrm{d}x-i\mathrm{d}y\right)\\ &=\int_{C}f(x+iy,x-iy)\,\left(\mathrm{d}x+i\mathrm{d}y\right)+g(x+iy,x-iy)\,\left(\mathrm{d}x-i\mathrm{d}y\right)\\ &=\int_{0}^{1}\left(f\left(a(t)+ib(t),a(t)-ib(t)\right)\cdot\left(a'(t)+ib'(t)\right)\right.\\ &\phantom{=}\left.+g\left(a(t)+ib(t),a(t)-ib(t)\right)\cdot\left(a'(t)-ib'(t)\right)\right)\,\mathrm{d}t \end{align}

If you'd like, you may separate the outputs of $f$ and $g$ into their real and imaginary parts, so that you could distribute and simplify the above to find real integral expressions for its real and imaginary parts.

more general questions about complex 1-forms?

For some more about those outside of the context of integration, see, for instance, my answer to Why could we use the complex basis for the cotangent space and what does Cauchy Integral Formula in this basis say?.

Conversion to $\int\cdot\,\mathrm dz$

how exactly do we formulate $\int\limits_{C}f(z,\bar{z})\,d\bar{z}$ as an integral integrated $dz$?

Ignoring the $\bar{z}$ argument since it would complicate things and could be addressed in a separate question, $\mathrm{d}\overline{z}=\mathrm{d}x-i\mathrm{d}y$ yields:

\begin{align*}\int_{C}f(z)\mathrm{d}\overline{z}&=\int_{C}\left(u\left(z\right)+iv\left(z\right)\right)\left(\mathrm{d}x\boxed{-}i\mathrm{d}y\right)\\&=\int_{C}\left(u\left(z\right)\mathrm{d}x+iv\left(z\right)\mathrm{d}x\boxed{-}iu\left(z\right)\mathrm{d}y\boxed{+}v\left(z\right)\mathrm{d}y\right)\\&=\int_{0}^{1}\left(u\left(a(t)+ib(t)\right)a'(t)+iv\left(a(t)+ib(t)\right)a'(t)\right.\\&\phantom{=}\left.\boxed{-}iu\left(a(t)+ib(t)\right)b'(t)\boxed{+}v\left(a(t)+ib(t)\right)b'(t)\right)\mathrm{d}t\end{align*}

To obtain another formula, we can use a similar double-conjugation trick to what worked to obtain equation (1):

\begin{align*}\overline{\int_{C}\overline{f(z)}\,\mathrm{d}z}&=\overline{\int_{C}\left(u\left(z\right)\boxed{-i}v\left(z\right)\right)\,\left(\mathrm{d}x+i\mathrm{d}y\right)}\\&=\overline{\int_{C}\left(u\left(z\right)\,\mathrm{d}x\boxed{-}iv\left(z\right)\,\mathrm{d}x+iu\left(z\right)\,\mathrm{d}y\boxed{+}v\left(z\right)\,\mathrm{d}y\right)}\\&=\int_{C}\left(u\left(z\right)\,\mathrm{d}x\boxed{+}iv\left(z\right)\,\mathrm{d}x\boxed{-}iu\left(z\right)\,\mathrm{d}y+v\left(z\right)\,\mathrm{d}y\right)\\&=\int_{0}^{1}\left(u\left(a(t)+ib(t)\right)a'(t)+iv\left(a(t)+ib(t)\right)a'(t)\right.\\&\phantom{=}\left.-iu\left(a(t)+ib(t)\right)b'(t)+v\left(a(t)+ib(t)\right)b'(t)\right)\mathrm{d}t\\&=\int_{C}f(z)\mathrm{d}\overline{z}\checkmark\end{align*}

To emphasize: \begin{equation}\int_{C}f(z)\mathrm{d}\overline{z}=\overline{\int_{C}\overline{f(z)}\,\mathrm{d}z}\tag{2}\end{equation}


Other identities

A Comprehensive Table

By applying equations (1) and/or (2) with the functions $f$, $z\mapsto f(\overline{z})$, $z\mapsto \overline{f(z)}$, and $z\mapsto \overline{f(\overline{z})}$, we can obtain a whole host of identities:

\begin{array}{rc|rc} \int_{C}f(z)\,\mathrm{d}z=: & a & \int_{C}f(z)\,\mathrm{d}\overline{z}= & \overline{c}\\ \int_{C}f(\overline{z})\,\mathrm{d}z=: & b & \int_{C}f(\overline{z})\,\mathrm{d}\overline{z}= & \overline{d}\\ \int_{C}\overline{f(z)}\,\mathrm{d}z=: & c & \int_{C}\overline{f(z)}\,\mathrm{d}\overline{z}= & \overline{a}\\ \int_{C}\overline{f(\overline{z})}\,\mathrm{d}z=: & d & \int_{C}\overline{f(\overline{z})}\,\mathrm{d}\overline{z}= & \overline{b}\\ \hline \int_{\overline{C}}f(z)\,\mathrm{d}z= & \overline{d} & \int_{\overline{C}}f(z)\,\mathrm{d}\overline{z}= & b\\ \int_{\overline{C}}f(\overline{z})\,\mathrm{d}z= & \overline{c} & \int_{\overline{C}}f(\overline{z})\,\mathrm{d}\overline{z}= & a\\ \int_{\overline{C}}\overline{f(z)}\,\mathrm{d}z= & \overline{b} & \int_{\overline{C}}\overline{f(z)}\,\mathrm{d}\overline{z}= & d\\ \int_{\overline{C}}\overline{f(\overline{z})}\,\mathrm{d}z= & \overline{a} & \int_{\overline{C}}\overline{f(\overline{z})}\,\mathrm{d}\overline{z}= & c \end{array}

Note that this table includes cases such as $\int_{C}\overline{f(z)}\mathrm{d}\overline{z}=\overline{\int_{C}f(z)\,\mathrm{d}z}$ from Sangchul Lee's answer and

Why should $\int\limits_{\gamma}f(z)\,dz=\int\limits_{\bar{\gamma}}f(\bar{z})\,d\bar{z}$?

the comment you mentioned.

Replacing $i$ with $-i$

replacing all instances...this integral must equal $−i$...Or am I making some kind of mistake?

Now that we have the above table of identities, we can easily see what options we have to get to $\overline{\int_{C}f(z)\,\mathrm{d}z}=\overline{a}$. Specifically, we could use one of:

  1. $\int_{C}\overline{f(z)}\,\mathrm{d}\overline{z}$
  2. $\int_{\overline{C}}\overline{f(\overline{z})}\,\mathrm{d}z$
  3. $\overline{\int_{\overline{C}}f(\overline{z})\,\mathrm{d}\overline{z}}$.

The third expression is not satisfying because it has conjugation on the outside.

The first expression is odd because it may seem like a coincidence that an "anti-contour integral" (integration with respect to $\overline{z}$) of the conjugate function equals the conjugate of the original integral; it doesn't seem to capture the intent of "[replacing] each $i$ with a $−i$".

But I believe the second expression is just right: We keep the $\mathrm dz$ since we still want to do a contour integral, but we have conjugated the curve and the input and the output of the function. Since we've basically conjugated everything in sight, it makes sense that the result is the conjugate of the original integral.

(Note that in the specific and subtle case of $f(z)=z$ that appeared in the OP, we have $\int_{\overline{C}}\overline{f(\overline{z})}\,\mathrm{d}z=\int_{\overline{C}}\overline{\overline{z}}\,\mathrm{d}z=\int_{\overline{C}}z\,\mathrm{d}z$.)

Mark S.
  • 25,893
  • This is very comprehensive, so I hope you don't mind that I took my time. You helped me realise that I didn't actually replace each $i$ with a $-i$. I didn't turn $x+yi\mapsto x-yi$ in the bound. $z\in C$ should have become $\bar{z}\in\bar{C}$. Since I can't help but abstracting, I tried it again. But I still messed it up. – Darmani V Feb 17 '25 at 19:24
  • $$\int_{z\in{C}}f(z)dz=\int_{x+yi\in\left[\alpha+i\beta\to\gamma+i\delta\right]} u(x+yi)+iv(x+yi) d(x+yi)=a$$ $$\int_{\bar{z}\in\bar{C}}\overline{f(\bar{z})}d\bar{z}=\int_{x-yi\in\left[\alpha-i\beta\to\gamma-i\delta\right]}u(x-yi)-iv(x-yi)d(x-yi)=\int_{z\in C}\overline{f(\bar{z})}d\bar{z}=\bar{b}$$ Still, you've given quite the treasure trove here, so mulling it over more will probably reveal it. Thank you. – Darmani V Feb 17 '25 at 19:24
  • Wait, I think I see it. $u$ and $v$ don't map $x+yi$ but rather $(x,y)$. So we don't conjugate the argument of the function, since there should no longer be an $i$ there when written out in component form. I think this makes everything agree with your table. – Darmani V Mar 19 '25 at 18:26