1

I previously studied some differential forms on real manifolds from Introduction to Smooth Manifolds by Lee and I just started reading Principles of Algebraic Geometry by Griffith & Harris. However, I don't get what do they mean by a complex basis for the cotangent space. From the way I understand it, saying $C^n\cong R^{2n}$ means identifying the cotangent of the two. If this is the case, what do they mean by a complex linear combination of two real vectors?

enter image description here

Another question seems to be related to this question: where does the extra term in the equation below come from? The undergraduate version of Cauchy Integral Formula I learnt has only the first term on the right side of the equation.

enter image description here

kid111
  • 449
  • I'm not confident I can give a complete answer, but with a single complex variable: the Cauchy Riemann equations amount to the $\overline w$ partial being $0$, so if $f$ is holomorphic the second term of that Cauchy integral formula vanishes. (And for non-holomorphic functions the integral over a loop is related to area, so I'm not surprised by the form of that second term.) – Mark S. Mar 21 '21 at 13:48
  • 1
    Cauchy integral formula. The second term would be $0$ if $f$ is holomorphic. The extra term is added to get something that applies even if $f$ is not holomorphic. I assume the "undergraduate version" you learned had the hypothesis that $f$ is holomorphic. – GEdgar Mar 21 '21 at 13:52
  • So you guys are saying that $f \in C^{\infty}$ means f is smooth as a function from $R^2$ to $R^2$. I agree. In this case, how do one make sense of the complex basis? Also how do one interpret the wedge product and the integral in the Cauchy Integral Formula? – kid111 Mar 21 '21 at 14:05

1 Answers1

1

Introduction

I do not have a deep understanding of differential forms, and know almost nothing about multiple complex variables. But I think the concepts needed to answer your question won't rely on either; I don't think any major concepts in this exposition will change for $n>1$.

Given any smooth function $\mathbf{f}:\mathbb{R}^{2}\to\mathbb{R}^{2}$, we may associate $\mathbf{f}\left(x,y\right)=\left\langle u\left(x,y\right),v\left(x,y\right)\right\rangle $ with $g:\mathbb{C}\to\mathbb{C}$ as $g\left(x+iy\right)=u\left(x,y\right)+iv\left(x,y\right)$. I wish I could have two large columns to easily present the parallels between the real and complex perspectives. With the space limitations of Mathematics StackExchange, I'm forced to go back and forth.

Cotangent Space

Decomposing a Real Form

We might write something like

\begin{align*} \mathrm{d}\mathbf{f} & =\left\langle \mathrm{d}u,\mathrm{d}v\right\rangle \\ & =\left\langle \dfrac{\partial u}{\partial x}\mathrm{d}x+\dfrac{\partial u}{\partial y}\mathrm{d}y,\dfrac{\partial v}{\partial x}\mathrm{d}x+\dfrac{\partial v}{\partial y}\mathrm{d}y\right\rangle \\ & =\dfrac{\partial\left\langle u,v\right\rangle }{\partial x}\mathrm{d}x+\dfrac{\partial\left\langle u,v\right\rangle }{\partial y}\mathrm{d}y\\ & =\dfrac{\partial u}{\partial x}\left\langle \mathrm{d}x,0\right\rangle +\dfrac{\partial v}{\partial x}\left\langle 0,\mathrm{d}x\right\rangle +\dfrac{\partial u}{\partial y}\left\langle \mathrm{d}y,0\right\rangle +\dfrac{\partial v}{\partial y}\left\langle 0,\mathrm{d}y\right\rangle \text{.} \end{align*}

Decomposing a Complex Form

Analogously, we have

\begin{align*} \mathrm{d}g & =\dfrac{\partial g}{\partial x}\mathrm{d}x+\dfrac{\partial g}{\partial y}\mathrm{d}y\\ & =\dfrac{\partial\left(\mathfrak{R}\circ g+i\mathfrak{I}\circ g\right)}{\partial x}\mathrm{d}x+\dfrac{\partial\left(\mathfrak{R}\circ g+i\mathfrak{I}\circ g\right)}{\partial y}\mathrm{d}y\\ & =\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}+i\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}\right)\mathrm{d}x+\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}+i\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}\right)\mathrm{d}y\\ & =\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}\mathrm{d}x+\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}i\mathrm{d}x+\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\mathrm{d}y+\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}i\mathrm{d}y\text{.} \end{align*} Above, I have used $\mathfrak{R}$ and $\mathfrak{I}$ for the real and imaginary parts.

A New Real Basis

We have written $\mathrm{d}\mathbf{f}$ as a linear combination of $\left\langle \mathrm{d}x,0\right\rangle $, $\left\langle 0,\mathrm{d}x\right\rangle $, $\left\langle \mathrm{d}y,0\right\rangle $, $\left\langle 0,\mathrm{d}y\right\rangle $. And we can rewrite $\mathrm{d}\mathbf{f}$ (or $2\mathrm{d}\mathbf{f}$) in terms of a new basis: $\left\langle \mathrm{d}x,\mathrm{d}y\right\rangle $, $\left\langle -\mathrm{d}y,\mathrm{d}x\right\rangle $, $\left\langle \mathrm{d}x,-\mathrm{d}y\right\rangle $, $\left\langle \mathrm{d}y,\mathrm{d}x\right\rangle $. We have

\begin{align*} 2\mathrm{d}\mathbf{f} & =2\dfrac{\partial u}{\partial x}\left\langle \mathrm{d}x,0\right\rangle +2\dfrac{\partial v}{\partial x}\left\langle 0,\mathrm{d}x\right\rangle +2\dfrac{\partial u}{\partial y}\left\langle \mathrm{d}y,0\right\rangle +2\dfrac{\partial v}{\partial y}\left\langle 0,\mathrm{d}y\right\rangle \\ & =\left(\dfrac{\partial u}{\partial x}+\dfrac{\partial v}{\partial y}\right)\left\langle \mathrm{d}x,\mathrm{d}y\right\rangle +\left(\dfrac{\partial v}{\partial x}-\dfrac{\partial u}{\partial y}\right)\left\langle -\mathrm{d}y,\mathrm{d}x\right\rangle \\ & \phantom{=}+\left(\dfrac{\partial u}{\partial x}-\dfrac{\partial v}{\partial y}\right)\left\langle \mathrm{d}x,-\mathrm{d}y\right\rangle +\left(\dfrac{\partial v}{\partial x}+\dfrac{\partial u}{\partial y}\right)\left\langle \mathrm{d}y,\mathrm{d}x\right\rangle \text{.} \end{align*}

As an aside, note that the latter two coefficients would be $0$ if the Cauchy-Riemann equations are satisfied.

A New Complex Basis

We have written $\mathrm{d}g$ as a real linear combination of $\mathrm{d}x$, $i\mathrm{d}x$, $\mathrm{d}y$, $i\mathrm{d}y$. And we can rewrite $\mathrm{d}g$ (or $2\mathrm{d}g$) in terms of a new basis: $\mathrm{d}x+i\mathrm{d}y$, $-\mathrm{d}y+i\mathrm{d}x$, $\mathrm{d}x-i\mathrm{d}y$, $\mathrm{d}y+i\mathrm{d}x$. Note that those expressions can be rewritten in a suggestive way as $\mathrm{d}x+i\mathrm{d}y$, $i\left(\mathrm{d}x+i\mathrm{d}y\right)$, $\mathrm{d}x-i\mathrm{d}y$, $i\left(\mathrm{d}x-i\mathrm{d}y\right)$. Inspired by $z=x+iy$ and $\overline{z}=x-iy$, we can make this even tidier by introducing the abbreviations $\mathrm{d}z=\mathrm{d}x+i\mathrm{d}y$ and $\mathrm{d}\overline{z}=\mathrm{d}x-i\mathrm{d}y$; this reduces the basis to $\mathrm{d}z$, $i\mathrm{d}z$, $\mathrm{d}\overline{z}$, $i\mathrm{d}\overline{z}$. We have

\begin{align*} 2\mathrm{d}g & =2\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}\mathrm{d}x+2\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}i\mathrm{d}x+2\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\mathrm{d}y+2\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}i\mathrm{d}y\\ & =\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}+\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}\right)\left(\mathrm{d}x+i\mathrm{d}y\right)+\left(\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}-\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\right)\left(-\mathrm{d}y+i\mathrm{d}x\right)\\ & \phantom{=}+\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}-\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}\right)\left(\mathrm{d}x-i\mathrm{d}y\right)+\left(\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}+\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\right)\left(\mathrm{d}y+i\mathrm{d}x\right)\\ & =\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}+\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}\right)\mathrm{d}z+\left(\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}-\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\right)\left(i\mathrm{d}z\right)\\ & \phantom{=}+\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}-\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}\right)\mathrm{d}\overline{z}+\left(\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}+\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\right)\left(i\mathrm{d}\overline{z}\right)\\ & =\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}+i\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}+\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}-i\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\right)\mathrm{d}z\\ & \phantom{=}+\left(\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial x}+i\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial x}-\dfrac{\partial\left(\mathfrak{I}\circ g\right)}{\partial y}+i\dfrac{\partial\left(\mathfrak{R}\circ g\right)}{\partial y}\right)\mathrm{d}\overline{z}\\ & =\left(\dfrac{\partial\left(\mathfrak{R}\circ g+i\mathfrak{I}\circ g\right)}{\partial x}+\dfrac{\partial\left(\mathfrak{I}\circ g-i\mathfrak{R}\circ g\right)}{\partial y}\right)\mathrm{d}z\\ & \phantom{=}+\left(\dfrac{\partial\left(\mathfrak{R}\circ g+i\mathfrak{I}\circ g\right)}{\partial x}+\dfrac{\partial\left(i\mathfrak{R}\circ g-\mathfrak{I}\circ g\right)}{\partial y}\right)\mathrm{d}\overline{z}\\ & =\left(\dfrac{\partial g}{\partial x}+\dfrac{\partial\left(-ig\right)}{\partial y}\right)\mathrm{d}z+\left(\dfrac{\partial g}{\partial x}+\dfrac{\partial\left(ig\right)}{\partial y}\right)\mathrm{d}\overline{z}\\ & =\left(\dfrac{\partial}{\partial x}-i\dfrac{\partial}{\partial y}\right)g\,\mathrm{d}z+\left(\dfrac{\partial}{\partial x}+i\dfrac{\partial}{\partial y}\right)g\,\mathrm{d}\overline{z}\text{.} \end{align*} Note that $\mathrm{d}g=\dfrac{\partial g}{\partial x}\mathrm{d}x+\dfrac{\partial g}{\partial y}\mathrm{d}y$ started as a complex linear combination of $\mathrm{d}x$ and $\mathrm{d}y$, and ended up as a complex linear combination of $\mathrm{d}z$ and $\mathrm{d}\overline{z}$, even though we passed through a representation as a real linear combination to show the parallel with $\mathbf{f}$. Dividing through by $2$, we obtain $\mathrm{d}g=\dfrac{1}{2}\left(\dfrac{\partial}{\partial x}-i\dfrac{\partial}{\partial y}\right)g\,\mathrm{d}z+\dfrac{1}{2}\left(\dfrac{\partial}{\partial x}+i\dfrac{\partial}{\partial y}\right)g\,\mathrm{d}\overline{z}$. This form suggests defining the "Wirtinger derivatives" : $\dfrac{\partial}{\partial z}=\dfrac{1}{2}\left(\dfrac{\partial}{\partial x}-i\dfrac{\partial}{\partial y}\right)$ and $\dfrac{\partial}{\partial\overline{z}}=\dfrac{1}{2}\left(\dfrac{\partial}{\partial x}+i\dfrac{\partial}{\partial y}\right)$ so that we may write the tidy $\boxed{\mathrm{d}g=\dfrac{\partial g}{\partial z}\mathrm{d}z+\dfrac{\partial g}{\partial\overline{z}}\mathrm{d}\overline{z}}$. In this form, the Cauchy-Riemann equations amount to "$\dfrac{\partial g}{\partial\overline{z}}=0$ as a complex number".

Cauchy Integral Formula

As you noted, the Cauchy Integral Formula doesn't usually have that extra term, because it's not needed for holomorphic functions. This generalization for smooth functions is sometimes known as the Cauchy-Pompeiu formula. An exposition (starting from an understanding of the boxed equation above) can be found in C.K. Fong's notes for "Calculus of Differential Forms with Applications". Specifically, in "Section 2. Complex 2 - forms: Cauchy - Pompeiu's Formula" of "Chapter 3: Complex Differential Forms". I'll summarize the argument here, translated into your book's variables.

Let $z$ be a particular complex number, and use $w$ for a varying one. Consider $\dfrac{f\left(w\right)}{w-z}\mathrm{d}w$. Then a routine calculation (using $\mathrm{d}\left(\dfrac{\mathrm{d}w}{w-z}\right)=0$) shows that $\mathrm{d}\left(\dfrac{f\left(w\right)}{w-z}\mathrm{d}w\right)=\dfrac{\partial f(w)}{\partial\overline{w}}\dfrac{\mathrm{d}\overline{w}\wedge\mathrm{d}w}{w-z}$.

We can apply Green's Theorem/general Stokes' Theorem to the large disc $\Delta$ by removing a small disc around the point $z$ and letting the small radius go to zero, just as in the standard proof of the Cauchy Integral Formula for a holomorphic $f$.

By the standard argument about what happens to the integral of $\dfrac{f(w)\mathrm{d}w}{w-z}$ around a circle whose radius approaches $0$, we end up with $\iint_{\Delta}\dfrac{\partial f(w)}{\partial\overline{w}}\dfrac{\mathrm{d}\overline{w}\wedge\mathrm{d}w}{w-z}=\int_{\partial\Delta}\dfrac{f(w)\mathrm{d}w}{w-z}-2\pi if\left(z\right)$. This is equivalent to the formula in your book (make sure to note that $\mathrm{d}\overline{w}\wedge\mathrm{d}w=-\mathrm{d}w\wedge\mathrm{d}\overline{w}$).

Note that only when $f$ is holomorphic could you note that $\dfrac{\partial f(w)}{\partial\overline{w}}=0$ and simplify.

Mark S.
  • 25,893