4

In this paper, Hamilton showed that $n\ge 47$ suffices for removing the $n-1,n-2,n-3,n-4,n-5$ degree term from the degree $n$ polynomial without solving equation higher than the quintic by a $n-1$ degree Tschirnhaus transformation, $$y=x^{n-1}+c_1x^{n-2}+c_2x^{n-3}+\dots+c_{n-1}$$ For the equation $$x^n+a_1x^{n-1}+a_2x^{n-2}+a_3x^{n-3}+\dots+a_n=0$$ to yields $$y^n+C_1y^{n-1}+C_2y^{n-2}+C_3y^{n-3}+\dots+C_n=0$$ By determining the coefficients $a_i$, one can solve, $$C_1=C_2=C_3=C_4=C_5=0$$ By equations not higher than quintic, or not higher than degree $n-1$.

One can prove that the $C_i$ will have the form, $$C_1=\alpha_1\\ C_2=\alpha_2c_{n-2}+\alpha_3\\ C_3=\alpha_4c_{n-2}^2+\alpha_5c_{n-2}+\alpha_6\\ C_4=\alpha_7c_{n-2}^3+\alpha_8c_{n-2}^2+\alpha_9c_{n-2}+\alpha_{10}$$ If $a_1=a_2=a_3=a_4=0$ (this is doable in radicals) with the first 4 $C_i$ missing their leading term $(c_{n-2},c_{n-2}^2,c_{n-2}^3,c_{n-2}^4)$ respectively, and the $\alpha_i$ are polynomials in other parameters.

Given that $\alpha_1,\alpha_2,\alpha_4,\alpha_7$ are linears, $\alpha_3=\alpha_5=\alpha_8$ are quadratics, $\alpha_6,\alpha_9$ are cubics and $\alpha_{10}$ are a quartic, one use the formula described in the paper: $$m(4,3,2,1)\le1+m(9,5,2)\le2+m(15,6,1)\le3+m(21,6)\color{red}{\le4+m(26,5)\le5+m(30,4)\le6+m(33,3)\le7+m(35,2)\le8+m(36,1)\le9+m(36)=9+36=45}$$ We ignore the red part and focus on the $m(21,6)$ which is $21$ linears and $6$ quadratics.

To achieve $m(4,3,2,1)\le42$ by solving equations not higher than quintic, then $m(21,6)\le39$, and one needs to solve for the $6$ quadratics and $21$ linears by radicals in $39$ variables. After that, the system is solved by equations not higher than quintic. It can be shown possible by splitting variables into $3$ parts, focus on a quadratic and split it into: $$A=A_{200}+A_{020}+A_{002}+A_{110}+A_{101}+A_{011}+A_{100}+A_{010}+A_{001}+A_{000}$$ With $A_{ijk}$ have $i,j,k$ being the total degree of the first part, second part and third part of the splitted variables respectively. The first part is used to solve and leave a free parameter: $$A_{200}=0$$ The second part is used to solve and also leave a free parameter: $$A_{020}=A_{110}=0$$ The third part is used to solve the most quadratics and linears: $$A_{002}+A_{001}+A_{000}=A_{101}+A_{100}=A_{011}+A_{010}=0$$ And the $2$ free parameters is used to solve $2$ quadratics. In particular $$m(a,b+2)\le 2+m(a+2b,b)$$ $$\implies m(21,6)\le 2+m(29,4)\le 4+m(33,2)=4+35=39$$ Therefore it is possible to reduce equations of degree $44$ in radicals, however a numerical example seems to be way too complex for this post.

To achieve $m(4,3,2,1)\le 19$ by solving equations not higher than degree $20$, we first free a parameter from the linears, quadratics, cubics and eliminate the quartic $C_4$ along with $C_5$ using extra help from the parameter $c_{19}$. One can easily prove that after splitting the variables into $2$ parts and split the equations $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\alpha_6$ into parts, the remaining equations will be: $$m(3+2+1,2+1,1)=m(6,3,1)\le 1+m(9,3)=1+9+3=13$$ The few last steps is solving equations as worse as degree $2^3=8$,and thus $$m(4,3,2,1)\le 14$$ Which implies a Tschirnhaus transformation of degree $15$ also suffices for reducing equations of degree $21$, but we will stick with transformation of degree $20$.

In particular, I want to reduce the sample equation: $$x^{21}+3x^{16}-x^{15}+x^{14}+2x^{13}+2x^{12}+x^{11}\\-x^{10}-x^9+x^8+4x^7-3x^6-2x^5-x^4+2x^3+x^2+x+1=0$$ Into: $$y^{21}+C_6y^{15}+C_7y^{14}+\dots=0$$ With all the $c_i$'s determined without solving equations higher than degree $20$.

Question: Will there be a numerical example to reduce the sample equation with constrains above?

Thinh Dinh
  • 8,233

1 Answers1

1

I realized that most of us does not have strong computational program just to preform the transformation alone, so I'll decide to answer this question myself, and hopefully provide more insights.


I. Determining the number of parameters.

To achieve $m(4,3,2,1)\le 19$ by solving equations not higher than degree $20$, we first free a parameter from the linears, quadratics, cubics and eliminate the quartic $C_4$. One can easily prove that after splitting the variables into $2$ parts and split the equations $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\alpha_6$ into parts, the remaining equations will be: $$m(3+2+1,2+1,1)=m(6,3,1)=\dots$$

We can simplify the process by directly killing $\alpha_4=\alpha_2=\alpha_1=0$, remembering $3$ variables for later. $$\alpha_6=\alpha_{6,30}+(\alpha_{6,21}+\alpha_{6,20})+(\alpha_{6,12}+\alpha_{6,11}+\alpha_{6,10})+(\alpha_{6,03}+\alpha_{6,02}+\alpha_{6,01}+\alpha_{6,00}),$$ $$\alpha_5=\alpha_{5,20}+(\alpha_{5,11}+\alpha_{5,10})+(\alpha_{5,02}+\alpha_{5,01}+\alpha_{5,00}),$$ $$\alpha_3=\alpha_{3,20}+(\alpha_{3,11}+\alpha_{3,10})+(\alpha_{3,02}+\alpha_{3,01}+\alpha_{3,00})$$ The SOE $\alpha_{6,30}=\alpha_{5,20}=\alpha_{3,20}=0$ can be reduced using Gröbner basis, to a single equation of degree $3^1\cdot 2^2=12$, therefore it requires $3$ variables, plus $1$ for the quartic $C_4$.

The remaining parts in round brackets, call the cubic one $A$, the quadratics $B,C,D$, and kill the linears, remembering $3$ variables for later. Likewise, we repeat the process: $$B=B_{20}+(B_{11}+B_{10})+(B_{02}+B_{01}+B_{00}),$$ $$C=C_{20}+(C_{11}+C_{10})+(C_{02}+C_{01}+C_{00}),$$ $$D=D_{20}+(D_{11}+D_{10})+(D_{02}+D_{01}+D_{00})$$ The SOE $B_{20}=C_{20}=D_{20}=0$ obviously can be solved by equations as worse as octics, therefore it requires $3$ variables, plus $1$ for the cubic $A$.

The remaining parts in round brackets, which is just $3$ quadratics and $3$ linears, requires $6$ variables. In total the number of variables required would be: $$3+3+1+3+3+1+6+\color{blue}1=21$$ Where the extra $\color{blue}1$ is $c_{19}$, therefore we just need to split a single variable into $2$: $$c_{20}\to c_{20}+c_{21}$$ And the full degree $20$ Tschirnhaus transformation would be: $$y=x^{20}+c_1x^{19}+c_2x^{18}+\dots+c_{19}x+\color{red}{c_{20}+c_{21}}$$ II. The $\pmb{\alpha_i}$

We compute $C_1,C_2,C_3$, then split them into $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\alpha_6$, and eliminate the linears using $3$ variables $c_1,c_2,c_3$ to obtain:

[-5169877149875939*c10**2 + 11977108415179514*c10*c11 + 1440090697170300*c10*c12 - 2001957892814835*c10*c13 - 3156849279511906*c10*c14 + 3773162854987110*c10*c15 - 2583388838004311*c10*c16 + 434351969385470*c10*c17 - 5257941886585521*c10*c20 - 5257941886585521*c10*c21 - 61086200953667705*c10*c4 + 38092336933937044*c10*c5 - 10621877371786363*c10*c6 - 3595631260263700*c10*c7 - 3365873390840670*c10*c8 + 11376042442913654*c10*c9 - 88677998040075711*c10 - 6926490200482293*c11**2 - 772288813317320*c11*c12 + 2448461275316065*c11*c13 + 3294299299637445*c11*c14 - 4366266298952511*c11*c15 + 3105629589717367*c11*c16 - 505090887256671*c11*c17 + 5826335316180477*c11*c20 + 5826335316180477*c11*c21 + 65684220549968785*c11*c4 - 46282530422155318*c11*c5 + 12590372007307255*c11*c6 + 3714772860825132*c11*c7 + 3753571798253755*c11*c8 - 12360489592634944*c11*c9 + 112177332030428985*c11 + 1570204358446188*c12**2 + 423685516999964*c12*c13 + 22909067272842*c12*c14 - 239912337055061*c12*c15 + 589077684361220*c12*c16 - 432083654054431*c12*c17 - 655967574961881*c12*c20 - 655967574961881*c12*c21 - 2527331854518249*c12*c4 - 12784264461498026*c12*c5 + 3022398558079491*c12*c6 - 1715585754495591*c12*c7 - 1817872830532547*c12*c8 - 1936404150396892*c12*c9 + 53791017725973579*c12 - 37596340007433*c13**2 - 550901202361174*c13*c14 + 696730319242654*c13*c15 - 640465583509752*c13*c16 - 35007487325582*c13*c17 - 1089783118981641*c13*c20 - 1089783118981641*c13*c21 - 14143650307506958*c13*c4 + 6192077393295358*c13*c5 - 2405990990431213*c13*c6 - 710801954309829*c13*c7 - 624058894928710*c13*c8 + 2632774532129734*c13*c9 - 15682348262595469*c13 - 453059976329904*c14**2 + 1026023799993910*c14*c15 - 785001953945982*c14*c16 + 230003213713458*c14*c17 - 1340298598176468*c14*c20 - 1340298598176468*c14*c21 - 16103259602445157*c14*c4 + 12532986507294653*c14*c5 - 2806298696704046*c14*c6 - 526390536741758*c14*c7 - 783971278063104*c14*c8 + 3162271916857747*c14*c9 - 31591842487386656*c14 - 700674269341984*c15**2 + 1049072390897113*c15*c16 - 149201136380910*c15*c17 + 1846754314592838*c15*c20 + 1846754314592838*c15*c21 + 21808562220954854*c15*c4 - 14115854182345268*c15*c5 + 4235320230045578*c15*c6 + 1090014338467332*c15*c7 + 1050912124679339*c15*c8 - 4161955979827789*c15*c9 + 35246659733443260*c15 - 314318022494146*c16**2 + 48410586665086*c16*c17 - 1356354359558310*c16*c20 - 1356354359558310*c16*c21 - 15035263400429774*c16*c4 + 9429394518138360*c16*c5 - 2704170907107702*c16*c6 - 1152801498499369*c16*c7 - 947493147870511*c16*c8 + 2579560288298958*c16*c9 - 19976532408159722*c16 + 8731419165198*c17**2 + 343710152176503*c17*c20 + 343710152176503*c17*c21 + 3552181596185002*c17*c4 - 542490301909791*c17*c5 + 24593584499278*c17*c6 + 365897605880251*c17*c7 + 441006897606792*c17*c8 - 384733337459440*c17*c9 - 1868509470167885*c17 - 1215438593096847*c20**2 - 2430877186193694*c20*c21 - 25740682182469191*c20*c4 + 21942023834095806*c20*c5 - 5719705733225379*c20*c6 - 902218621992828*c20*c7 - 1058489238820209*c20*c8 + 5509570333221528*c20*c9 - 58778917703113734*c20 - 1215438593096847*c21**2 - 25740682182469191*c21*c4 + 21942023834095806*c21*c5 - 5719705733225379*c21*c6 - 902218621992828*c21*c7 - 1058489238820209*c21*c8 + 5509570333221528*c21*c9 - 58778917703113734*c21 - 150550877530060008*c4**2 + 251751055175314869*c4*c5 - 64123332831800611*c4*c6 - 13125074908969866*c4*c7 - 12087068698687688*c4*c8 + 61709225688212455*c4*c9 - 653005220795206871*c4 - 61900684309786170*c5**2 + 36095074468795509*c5*c6 + 18299566912180942*c5*c7 + 17777724658810622*c5*c8 - 41579212885152048*c5*c9 + 239983905274435557*c5 - 5368487800232157*c6**2 - 4631461908419634*c6*c7 - 4255627598292204*c6*c8 + 10183822117579585*c6*c9 - 74155476064241454*c6 + 78061081063248*c7**2 - 162491590481978*c7*c8 + 3592295618358158*c7*c9 - 58145986584139328*c7 - 230983687483555*c8**2 + 3592361359023018*c8*c9 - 54189785045766468*c8 - 5309767132143988*c9**2 + 92407000088626294*c9 - 141748968005632892]
[972404354690666470*c10**2 - 2284842586011799262*c10*c11 + 509085738087606062*c10*c12 + 255616949315787614*c10*c13 + 466188995817949284*c10*c14 - 725784256028652362*c10*c15 + 644933958011462360*c10*c16 - 81140628276431560*c10*c17 + 76827857469225490*c10*c18 + 690799447736930616*c10*c20 + 690799447736930616*c10*c21 + 10636675826372618438*c10*c4 - 8693584868549323150*c10*c5 + 3211387080278829382*c10*c6 + 494003103147633318*c10*c7 + 103265633988988348*c10*c8 - 2785944509716585070*c10*c9 + 27427986792238725494*c10 + 1365796586751156122*c11**2 - 582538635741978336*c11*c12 - 277501816176281206*c11*c13 - 564551668295870386*c11*c14 + 855446869977095520*c11*c15 - 769685568139596930*c11*c16 + 93707011122966374*c11*c17 - 91410437061023718*c11*c18 - 833813688731334066*c11*c20 - 833813688731334066*c11*c21 - 12866693282724088764*c11*c4 + 10161150950525924072*c11*c5 - 3841332894493925510*c11*c6 - 622522180115277022*c11*c7 - 144766795898100588*c11*c8 + 3363098160464736290*c11*c9 - 32120996931641908720*c11 + 61612741421079306*c12**2 + 88759813944762206*c12*c13 + 120588001273276240*c12*c14 - 183219835674654558*c12*c15 + 155636940749254090*c12*c16 - 30210001144912004*c12*c17 + 9489949131523282*c12*c18 + 192795088570087290*c12*c20 + 192795088570087290*c12*c21 + 2541757075310287964*c12*c4 - 2277831628918235520*c12*c5 + 716196837155443966*c12*c6 + 98194757369051738*c12*c7 + 57331969123254426*c12*c8 - 625516638818179746*c12*c9 + 6792170696088157560*c12 + 22408722926754455*c13**2 + 60706596664507040*c13*c14 - 86924001503673838*c13*c15 + 80186674987311716*c13*c16 - 18173281224854040*c13*c17 + 4674977988521444*c13*c18 + 76522666133960886*c13*c20 + 76522666133960886*c13*c21 + 1210109613211621560*c13*c4 - 1213255536614783898*c13*c5 + 377745642757581406*c13*c6 + 27938472976812058*c13*c7 - 4581411915104522*c13*c8 - 331986815998301920*c13*c9 + 3847387691284776438*c13 + 58270289250602491*c14**2 - 179363973352613968*c14*c15 + 157388664863079160*c14*c16 - 18331196584625298*c14*c17 + 22196926775792634*c14*c18 + 167460155317126686*c14*c20 + 167460155317126686*c14*c21 + 2633351529658048598*c14*c4 - 2104824130304352076*c14*c5 + 812622141105611374*c14*c6 + 145301654781948604*c14*c7 + 31009786993212004*c14*c8 - 697969286694203262*c14*c9 + 6650517728527660764*c14 + 133724778103299310*c15**2 - 242114706262735144*c15*c16 + 32151412287393554*c15*c17 - 28248200754582480*c15*c18 - 260888300590502340*c15*c20 - 260888300590502340*c15*c21 - 4026607359510079500*c15*c4 + 3226280643534293512*c15*c5 - 1186679730417327664*c15*c6 - 184034636229574916*c15*c7 - 47937554266946184*c15*c8 + 1047920323232559982*c15*c9 - 10153040512081751424*c15 + 108654759757468155*c16**2 - 25861390940875384*c16*c17 + 24018681280399988*c16*c18 + 239708022479983260*c16*c20 + 239708022479983260*c16*c21 + 3632270961269037568*c16*c4 - 2837974217289730128*c16*c5 + 1067930321570574788*c16*c6 + 171999780728319244*c16*c7 + 47076740376351186*c16*c8 - 932866181361259138*c16*c9 + 8908127886824033340*c16 + 2485253612278717*c17**2 - 2164588595104542*c17*c18 - 25572424754069592*c17*c20 - 25572424754069592*c17*c21 - 365760066452269198*c17*c4 + 397331279396161140*c17*c5 - 132459517621722000*c17*c6 - 14771161774486580*c17*c7 + 1378624899326110*c17*c8 + 102995653330411746*c17*c9 - 1242271110499889194*c17 + 1600426183613415*c18**2 + 31333811502785694*c18*c20 + 31333811502785694*c18*c21 + 460606957386799766*c18*c4 - 309696921296868558*c18*c5 + 116354591052053024*c18*c6 + 27032491051518608*c18*c7 + 13727526950650776*c18*c8 - 111070741041458750*c18*c9 + 916812754872056240*c18 + 122676160496806476*c20**2 + 245352320993612952*c20*c21 + 3926115863196739044*c20*c4 - 3101295823006688034*c20*c5 + 1213736682180209376*c20*c6 + 194276477279346462*c20*c7 + 31617255673933440*c20*c8 - 1048685111417715282*c20*c9 + 9990559033144189374*c20 + 122676160496806476*c21**2 + 3926115863196739044*c21*c4 - 3101295823006688034*c21*c5 + 1213736682180209376*c21*c6 + 194276477279346462*c21*c7 + 31617255673933440*c21*c8 - 1048685111417715282*c21*c9 + 9990559033144189374*c21 + 30631343745810670185*c4**2 - 46893247417082122244*c4*c5 + 18244928520478060060*c4*c6 + 3171861378017386390*c4*c7 + 759270994769246792*c4*c8 - 15917859733076250854*c4*c9 + 148401880267336891302*c4 + 19493329688560196568*c5**2 - 14052180561667095122*c5*c6 - 2120330102530572746*c5*c7 - 493512965678627248*c5*c8 + 12235377334442662956*c5*c9 - 122102904095679802328*c5 + 2604295406604593837*c6**2 + 891378312851182900*c6*c7 + 303281282834152188*c6*c8 - 4639159925141793292*c6*c9 + 43656413170592349326*c6 + 94706095290048146*c7**2 + 49905405454320728*c7*c8 - 832091716886527194*c7*c9 + 6765606278288504316*c7 - 15332343651647606*c8**2 - 257545763916544860*c8*c9 + 1966787579240726328*c8 + 2035985517269551937*c9**2 - 38142513461322282374*c9 + 189623150409815370865, -235043746657116829057368833*c10**3 + 747928737543945294245852708*c10**2*c11 - 235178251069734234685226683*c10**2*c12 - 86451701133368436907209731*c10**2*c13 - 164854332862188647926426719*c10**2*c14 + 239002821209166139159238508*c10**2*c15 - 236419666548261642306771656*c10**2*c16 + 33616112764642600887966901*c10**2*c17 - 20365129509820432197064512*c10**2*c18 - 197733454237609133696192239*c10**2*c20 - 197733454237609133696192239*c10**2*c21 - 3562269101988141449529315701*c10**2*c4 + 3168776648058618332018241501*c10**2*c5 - 1121981294022156135440741467*c10**2*c6 - 60158981416275745376432043*c10**2*c7 + 73059176699124789909860918*c10**2*c8 + 1001888794728861555272102335*c10**2*c9 - 10578468857718189419648041144*c10**2 - 784617007123586610269548345*c10*c11**2 + 510416744829051017792710872*c10*c11*c12 + 179397577370752600208991728*c10*c11*c13 + 349280467703350286577854812*c10*c11*c14 - 501316688702230479799836448*c10*c11*c15 + 502891892324778984933119106*c10*c11*c16 - 72188895722373724073635522*c10*c11*c17 + 42072854326825607650642080*c10*c11*c18 + 408457060457026081072207312*c10*c11*c20 + 408457060457026081072207312*c10*c11*c21 + 7506309382570979010644940286*c10*c11*c4 - 6719579786450611784414670748*c10*c11*c5 + 2372767675005586401381905774*c10*c11*c6 + 100650412982790427563155606*c10*c11*c7 - 179624863356141295953269492*c10*c11*c8 - 2128285092452922238687471900*c10*c11*c9 + 22577116055412712981290714490*c10*c11 - 76519925881595288349363888*c10*c12**2 - 61190498244690017590951258*c10*c12*c13 - 109339093738970843765460194*c10*c12*c14 + 163176818673787966475696822*c10*c12*c15 - 156115858842249172139843234*c10*c12*c16 + 22535408539709074516274346*c10*c12*c17 - 13906009072680055434332226*c10*c12*c18 - 142809075270949058322676374*c10*c12*c20 - 142809075270949058322676374*c10*c12*c21 - 2387406196726422424537863626*c10*c12*c4 + 2115708836463739438277875678*c10*c12*c5 - 747564262256264251441193902*c10*c12*c6 - 53380547575993354756382786*c10*c12*c7 + 31473712205276043472785362*c10*c12*c8 + 660823399780486085972500336*c10*c12*c9 - 6956870030051388873971170056*c10*c12 - 11242935048595749631522520*c10*c13**2 - 39430237761547023530747234*c10*c13*c14 + 57918995701074932518456092*c10*c13*c15 - 57719244414768530804665112*c10*c13*c16 + 8711730215623644437353938*c10*c13*c17 - 4620963499537075467881088*c10*c13*c18 - 45428429183119649249074482*c10*c13*c20 - 45428429183119649249074482*c10*c13*c21 - 847220965777696372330242512*c10*c13*c4 + 784752379589458301006809194*c10*c13*c5 - 272813088593816051983759234*c10*c13*c6 - 9318550148992836987922536*c10*c13*c7 + 22814353513914286436539552*c10*c13*c8 + 242266796324834831479535676*c10*c13*c9 - 2638814688580549164438022954*c10*c13 - 38680708603965087622770354*c10*c14**2 + 111506801517082253568264188*c10*c14*c15 - 110893914206220429395604068*c10*c14*c16 + 15504875544109724656059116*c10*c14*c17 - 9663732770067993903786906*c10*c14*c18 - 91668060451572758645569580*c10*c14*c20 - 91668060451572758645569580*c10*c14*c21 - 1672669334767792732549660300*c10*c14*c4 + 1478856438528545354896767404*c10*c14*c5 - 525842997174069429354546948*c10*c14*c6 - 28161134347599098383308230*c10*c14*c7 + 35041294874950463796983172*c10*c14*c8 + 470646796967884353047092938*c10*c14*c9 - 4946853717779894689432537306*c10*c14 - 80158024078613934308553981*c10*c15**2 + 160507000820813611356803308*c10*c15*c16 - 23187207891256664016401948*c10*c15*c17 + 13388820756052112071257746*c10*c15*c18 + 130516777088841441088916094*c10*c15*c20 + 130516777088841441088916094*c10*c15*c21 + 2394980931251822411844154008*c10*c15*c4 - 2148714036427936804445463936*c10*c15*c5 + 757555589005389633613459234*c10*c15*c6 + 32121221693812163856154950*c10*c15*c7 - 57250145643998086476733704*c10*c15*c8 - 678966422865805120806989422*c10*c15*c9 + 7214751237407765409695405770*c10*c15 - 79188956771739815008668728*c10*c16**2 + 22412977194800582512746170*c10*c16*c17 - 13646373209230289391535438*c10*c16*c18 - 134528131602452125253845564*c10*c16*c20 - 134528131602452125253845564*c10*c16*c21 - 2396287524020409802779706274*c10*c16*c4 + 2120159250366836692268999608*c10*c16*c5 - 751158330891896997731414410*c10*c16*c6 - 41761705162274033932418904*c10*c16*c7 + 46710961546245048182367486*c10*c16*c8 + 671677737971036081874443410*c10*c16*c9 - 7064403582266107302843586590*c10*c16 - 1623602879923353381306050*c10*c17**2 + 1984061445500746764848960*c10*c17*c18 + 19443573989860994711175910*c10*c17*c20 + 19443573989860994711175910*c10*c17*c21 + 337721637143992900347857712*c10*c17*c4 - 303720967721381420168937900*c10*c17*c5 + 107255364415247923048766876*c10*c17*c6 + 6783746430324631270198492*c10*c17*c7 - 5680679619934028369279148*c10*c17*c8 - 94506057214763988886922898*c10*c17*c9 + 1005822150960031334832382802*c10*c17 - 554857523666802167248880*c10*c18**2 - 11090502545222631050872506*c10*c18*c20 - 11090502545222631050872506*c10*c18*c21 - 203548229451307521858608456*c10*c18*c4 + 181197420140743120235948124*c10*c18*c5 - 63610642510477226151788528*c10*c18*c6 - 1758959656801926835663750*c10*c18*c7 + 5519079005214613410507302*c10*c18*c8 + 57978813580660551787506968*c10*c18*c9 - 611668422434865512195019224*c10*c18 - 50509476691158336626917611*c10*c20**2 - 101018953382316673253835222*c10*c20*c21 - 1963933321044928886356518868*c10*c20*c4 + 1785088112052107295043575590*c10*c20*c5 - 632354157101417961239169410*c10*c20*c6 - 16297244360906106711625988*c10*c20*c7 + 59903814483434599598669802*c10*c20*c8 + 568020626366415678173197048*c10*c20*c9 - 6084141006621558835266021270*c10*c20 - 50509476691158336626917611*c10*c21**2 - ...

I'll finish my answer soon.

Thinh Dinh
  • 8,233