Not an answer
Simplify the integrand using trigonometric identities
- $\csc^2(x) = \frac{1}{\sin^2(x)}$, so $\ln(\csc^2(x)) = \ln\left(\frac{1}{\sin^2(x)}\right) = -2\ln(\sin(x))$
- $\sin(2x) = 2\sin(x)\cos(x)$
Substitute these into the integrand $$\sqrt[5]{\tan(x)} \cdot \frac{-2\ln(\sin(x))}{2\sin(x)\cos(x)} = -\sqrt[5]{\tan(x)} \cdot \frac{\ln(\sin(x))}{\sin(x)\cos(x)}$$
Rewrite everything in terms of $\sin$ and $\cos$ $$-\frac{\sin^{1/5}(x)}{\cos^{1/5}(x)} \cdot \frac{\ln(\sin(x))}{\sin(x)\cos(x)} = -\frac{\ln(\sin(x))}{\sin^{4/5}(x)\cos^{6/5}(x)}$$
Let $u = \sin(x)$. Then:
- $du = \cos(x) \, dx$
- $\cos(x) = \sqrt{1 - u^2}$
- When $x = 0$, $u = 0$
- When $x = \frac{\pi}{2}$, $u = 1$
Thus, the integral becomes $$I = -\int_0^1 \frac{\ln(u)}{u^{4/5}(1 - u^2)^{3/5}} \, du$$ Use the following $$\frac{\partial}{\partial a} B(a, b) = \int_0^1 t^{a-1}(1 - t)^{b-1} \ln(t) \, dt$$
This matches the form of the integral if we set
- $a - 1 = -\frac{4}{5} \Rightarrow a = \frac{1}{5}$
- $b - 1 = -\frac{3}{5} \Rightarrow b = \frac{2}{5}$
Thus, the integral becomes $$\int_0^1 \frac{\ln(u)}{u^{4/5}(1 - u^2)^{3/5}} \, du = \frac{\partial}{\partial a} B(a, b) \bigg|_{a = \frac{1}{5}, b = \frac{2}{5}}$$ We know that $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)}$
Taking the derivative with respect to $a$ $$\frac{\partial}{\partial a} B(a, b) = B(a, b) \left(\psi(a) - \psi(a + b)\right)$$ where $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ is the $\textbf{digamma function}$.
Substituting $a = \frac{1}{5}$ and $b = \frac{2}{5}$ $$\frac{\partial}{\partial a} B(a, b) \bigg|_{a = \frac{1}{5}, b = \frac{2}{5}} = B\left(\frac{1}{5}, \frac{2}{5}\right) \left(\psi\left(\frac{1}{5}\right) - \psi\left(\frac{1}{5} + \frac{2}{5}\right)\right)$$ $$\implies\frac{\partial}{\partial a} B(a, b) \bigg|_{a = \frac{1}{5}, b = \frac{2}{5}} = B\left(\frac{1}{5}, \frac{2}{5}\right) \left(\psi\left(\frac{1}{5}\right) - \psi\left(\frac{3}{5}\right)\right)$$
The digamma function has known values at rational points. In particular
- $\psi\left(\frac{1}{5}\right) = -\gamma - \ln(5) - \frac{\pi}{2}\cot\left(\frac{\pi}{5}\right)$
- $\psi\left(\frac{3}{5}\right) = -\gamma - \ln(5) + \frac{\pi}{2}\cot\left(\frac{3\pi}{5}\right)$
where $\gamma$ is the Euler-Mascheroni constant. Using the identity $\cot\left(\frac{\pi}{5}\right) = \sqrt{5 + 2\sqrt{5}}$ and $\cot\left(\frac{3\pi}{5}\right) = -\sqrt{5 - 2\sqrt{5}}$, we can simplify $$\psi\left(\frac{1}{5}\right) - \psi\left(\frac{3}{5}\right) = -\frac{\pi}{2}\cot\left(\frac{\pi}{5}\right) - \frac{\pi}{2}\cot\left(\frac{3\pi}{5}\right)$$ Substituting the values of $\cot$ $$\psi\left(\frac{1}{5}\right) - \psi\left(\frac{3}{5}\right) = -\frac{\pi}{2}\left(\sqrt{5 + 2\sqrt{5}} - \sqrt{5 - 2\sqrt{5}}\right)=-\frac{\pi}{2}\left(\sqrt{10-2\sqrt{5}}\right)$$
By using wolfram, I got $B\left(\frac15,\frac25\right)\approx6.838$
So we have $$I\approx\frac{\pi}{2}\left(\sqrt{10-2\sqrt{5}}\right)\cdot 6.838\approx25.24$$ where as $$5\pi\phi\approx25.41$$
This is the best I was able to do.