Question: If $X$ and $Y$ are two independent geometric random variables with parameters $a$ and $b$, where $$\forall k \geq 1, P(X = k) = a(1-a)^{k-1} $$ and $$\forall k \geq 1, P(Y = k) = b(1-b)^{k-1}$$ Then are $X - Y$ and $\min(X, Y)$ independent?
I know that $\min(X, Y)$ follows a geometric distribution with parameter $1 - (1-a)(1-b)$. How to prove or disprove their independence?