For the statement
- For all $\epsilon>0$ there is some $N\in\mathbb{N}$ such that for all $\boldsymbol{n\in\mathbb{N}}$ satisfying $\boldsymbol{n\ge N}$ and
all $\boldsymbol{x\in S}$, $|f_n(x)-f(x)|<\epsilon$
why is the boldfaced conjunction negated as two separate quantifiers,
whereas the conjunction
- for all $\boldsymbol{x\in S}$ and all $\boldsymbol{n\in\mathbb{N}}$ such that $\boldsymbol{n\ge N}$
The strings "for all $n{\in}\mathbb{N}$ satisfying $n{\ge} N$" and "(for) all $x{\in} S$" and "(for) all $n{\in}\mathbb{N}$ such that $n{\ge} N$" can neither be true nor false, so are not propositional functions, so are not propositional conjuncts. Rather, they are quantifications.
Not only is the latter bullet not a conjunction, it isn't even a sentence, but just a fragment of the full sentence "for all $\boldsymbol{x{\in} S}$ and all $\boldsymbol{n{\in}\mathbb{N}}$ such that $\boldsymbol{n{\ge} N}$, it holds that...".
would be negated as the disjunction
- there exists $x\notin S$ or there exists $n\in\mathbb{N}$ such that $n < N,$
as expected?
Correction: "there exists $x{\notin }S$ and $n{\in}\mathbb{N}$...".
For the same reason as above, this string also contains no propositional conjunction or propositional disjunction.
For the statement
- For all $\epsilon>0$ there is some $N\in\mathbb{N}$ such that for all $\boldsymbol{n\in\mathbb{N}}$ satisfying $\boldsymbol{n\ge N}$ and all $\boldsymbol{x\in S}$, $|f_n(x)-f(x)|<\epsilon$
and its negation
- there exists $\epsilon >0$ such that for all $N\in\mathbb{N}$, there exists $x\in S$ and there exists $n\in\mathbb{N}$ such that $n\ge N$ and $|f_n(x)-f(x)|\ge \epsilon,$
On an orthogonal note: the given statement does contain a hidden disjunction, and its negation correspondingly contains the expected conjunction (due to De Morgan's Laws):
$$\forall \epsilon{>}0\; \exists N{\in} \mathbb{N}\;\forall x{\in} S \;\forall n{\in} \mathbb{N} \;(n\ge N\implies |f_n(x)-f(x)|<\epsilon)\tag1$$
$$\forall \epsilon{>}0\; \exists N{\in} \mathbb{N}\;\forall x{\in} S \;\forall n{\in} \mathbb{N} \;(n\color\red< N\;\color{cyan}\lor\;|f_n(x)-f(x)|\color\red<\epsilon)\tag1$$
$$\exists \epsilon{>}0\; \forall N{\in} \mathbb{N}\;\exists x{\in} S \;\exists n{\in} \mathbb{N} \;(n\color\red\ge N\;\color{cyan}\land\;|f_n(x)-f(x)|\color\red\ge\epsilon)\tag2$$