The presence of $bc$, $ac$ and $ab$ in the denominators of each fraction provides a strong motivation to attempt multiplying the numerator and denominator by the appropriate numbers $a,b$ and $c$ respectively :
$$S=\sum_{\rm cyc} \frac {x^2}{x^2+3}$$
But, we still have not gotten anything useful . Therefore, we will try ways to escape fractional expressions. Observe that, $$x^3-x^2+2x-3=0$$ yields $$x^2=x^3+2x-3$$ and $x^3+2x-3$ has a rational root $x=1$ . So, $$x^2=(x-1)(x+\color{red}{x^2+3})$$
Thus, using the factorization above, we can reach the result that works for us :
$$
\begin{align}S=\sum_{\rm cyc} \frac {x^2}{x^2+3}&=\sum_{\rm cyc}\frac {x^2}{\frac {x^2}{x-1}-x}\\
&=\sum_{\rm cyc}\frac {x^2(x-1)}{x^2-x^2+x}\\
&=\sum_{\rm cyc}(x^2-x)\\
&=\sum_{\rm cyc}\frac {3-2x}{x}\\
&=3\sum_{\rm cyc}\frac {1}{x}-6\\ &=3\cdot \frac {2}{3}-6=-4\;.\end{align}
$$
$\color{red}{\text{Simpler approach}}$
It is possible to proceed with fewer calculations . Are you familiar with using Fraction Arithmetic ? It simply works as follows :
$$k=\frac {a}{b}=\frac {c}{d} \overset{\color{#c00}{b\neq d}}\iff k=\frac {a-c}{b-d}$$
Using the above arithmetic, multiplying the numerator and denominator of the fractions by $a,b,c$ respectively and then keeping in mind that $x^2+3=x^3+2x$, we have :
$$
\begin{align}\color{#c00}{\frac{x^2}{x^2+3}}&=\frac {x^2}{x^3+2x}=\color{#0a0}{\frac {x}{x^2+2}}\\
&=\frac {\color{#c00}{x^2}-\color{#0a0}{x}}{\color{#c00}{x^2+3}-\color{#0a0}{x^2-2}}\\
&=x^2-x\\
&=3\cdot\frac {1}{x}-2~.\end{align}
$$
So finally,
$$S=\sum_{\rm cyc} \frac {x^2}{x^2+3}=3\sum_{\rm cyc}\frac {1}{x}-6~.$$