Mathematica indicates the Fourier transform of $\text{csch}^2(t)$ is
$$\mathcal{F}_t\left[\text{csch}^2(t)\right](\omega)=-\frac{\pi \omega \coth\left(\frac{\pi \omega}{2}\right)+2}{\sqrt{2 \pi}}\tag{1}$$
but also indicates
$$\mathcal{F}_{\omega }^{-1}\left[-\frac{\pi \omega \coth\left(\frac{\pi \omega}{2}\right)+2}{\sqrt{2 \pi}}\right](t)=\text{csch}^2(t)-2\, \delta(t)\tag{2}$$
and
$$\mathcal{F}_{\omega}^{-1}\left[-\frac{\pi \omega \coth \left(\frac{\pi \omega}{2}\right)}{\sqrt{2 \pi }}\right](t)=\text{csch}^2(t)\tag{3}$$
but I'm wondering if
$$\mathcal{F}_t\left[\text{csch}^2(t)\right](\omega)=-\frac{\pi \omega \coth\left(\frac{\pi \omega}{2}\right)}{\sqrt{2 \pi}}\tag{4}$$
implied by the evaluation in formula (3) above is even correct.
Figures (1) and (2) below illustrate $\text{csch}^2(t)$ and $-\frac{\pi \omega \coth\left(\frac{\pi \omega}{2}\right)}{\sqrt{2 \pi}}$ which is the conjectured result illustrated in formula (4) above.
Figure (1): Illustration of $\text{csch}^2(t)$
Figure (2): Illustration of $-\frac{\pi \omega \coth\left(\frac{\pi \omega}{2}\right)}{\sqrt{2 \pi}}$
I'm wondering if the result in formula (4) above should really be
$$\mathcal{F}_t\left[\text{csch}^2(t)\right](\omega )=\left\{\begin{array}{cc} -\frac{\pi \omega \coth \left(\frac{\pi \omega}{2}\right)}{\sqrt{2 \pi }} & -\omega_0<\omega <\omega_0 \\ 0 & \text{otherwise} \\ \end{array}\right.\tag{5}$$
for some $\omega_0>0$, or perhaps the inverse Fourier transform illustrated in formula (3) above only converges in a distributional sense?
Update:
After exploring this question and this answer posted below a bit more I'm beginning to suspect the result illustrated in formula (4) above is correct.
The evaluations above assumed the Fourier and inverse Fourier transforms are defined as
$$F(\omega)=\mathcal{F}_t[f(t)](\omega)=\frac{1}{\sqrt{2 \pi}} \int\limits_{-\infty}^{\infty} f(t)\, e^{i \omega t} \, dt\tag{6}$$
and
$$f(t)=\mathcal{F}_{\omega}^{-1}[F(\omega)](t)=\frac{1}{\sqrt{2 \pi}} \int\limits_{-\infty}^{\infty} F(\omega)\, e^{-i t \omega} \, d\omega\tag{7}$$
respectively.
I believe this answer posted below assumes the Fourier and inverse Fourier transforms are defined as
$$\mathcal{F}_t[f(t)](\omega)=\int_{-\infty}^{\infty} f(t)\, e^{i \omega t} \, dt\tag{8}$$
and
$$\mathcal{F}_{\omega}^{-1}[F(\omega)](t)=\frac{1}{2 \pi} \int\limits_{-\infty}^{\infty} F(\omega)\, e^{-i t \omega} \, d\omega\tag{9}$$
respectively.
Formulas (8) and (9) above can be evaluated as
$$\mathcal{F}_t[f(t)](\omega)=2 \int_0^{\infty} f(t)\, \cos(\omega t) \, dt\tag{10}$$
and
$$\mathcal{F}_{\omega}^{-1}[F(\omega)](t)=\frac{1}{\pi} \int\limits_0^{\infty} F(\omega)\, \cos(t \omega) \, d\omega\tag{11}$$
respectively when $f(t)$ and $F(\omega)$ are even functions of $t$ and $\omega$ respectively.
I believe the definitions in formulas (8) and (10) above lead to
$$\mathcal{F}_t\left[\text{csch}^2(t)\right](\omega)=-\pi \omega\, \coth \left(\frac{\pi \omega }{2}\right)\tag{12}$$
and using the definition in Formula (8) above Mathematica indicates
$$\mathcal{F}_t\left[\frac{1}{t^2}\right](\omega)=\int_{-\infty}^{\infty} \frac{1}{t^2}\, e^{i \omega t} \, dt=-\pi \omega\, \text{sgn}(\omega)\tag{13}$$
which is consistent with
$$\mathrm{FP} \int\limits_{-\infty}^{\infty} \frac{1}{t^2} \, dt=0\tag{14}$$

