By @polychroma ' s comment, we have
$$
\ln(\csc(x)+\cot(x))=\sum_{n=0}^{\infty}\frac{2\cos((2n+1)x)}{2n+1}
$$
And so we have
$$
H = \sum_{n=0}^{\infty}\frac{2}{2n+1}\int_0^{\pi/2}\cos((2n+1)x)x\sin^3(x)dx \quad (1)
$$ assuming uniform convergence.
Then we want to compute the definite integral $$I_n = \int_{0}^{\pi/2} x \sin^3(x) \cos((2n+1)x) \, dx.$$
First we use the triple angle formula for sine: $\sin(3x) = 3\sin(x) - 4\sin^3(x)$.
Substitute this into the integral:
$$ I_n = \int_{0}^{\pi/2} x \left( \frac{3\sin(x) - \sin(3x)}{4} \right) \cos((2n+1)x) \, dx \\ = \frac{1}{4} \int_{0}^{\pi/2} x \left[ 3\sin(x)\cos((2n+1)x) - \sin(3x)\cos((2n+1)x) \right] \, dx $$
Now recall the product-to-sum identity: $$\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)].$$
For the first term: $3\sin(x)\cos((2n+1)x) = \frac{3}{2}[\sin((2n+2)x) + \sin(-2nx)] = \frac{3}{2}[\sin((2n+2)x) - \sin(2nx)]$
For the second term:
$-\sin(3x)\cos((2n+1)x) = -\frac{1}{2}[\sin((2n+4)x) + \sin((2-2n)x)]$
Substitute back:
$$ I_n = \frac{1}{4} \int_{0}^{\pi/2} x \left[ \frac{3}{2}\sin((2n+2)x) - \frac{3}{2}\sin(2nx) - \frac{1}{2}\sin((2n+4)x) - \frac{1}{2}\sin(2(1-n)x) \right] \, dx =\\ \frac{1}{8} \int_{0}^{\pi/2} x \left[ 3\sin((2n+2)x) - 3\sin(2nx) - \sin((2n+4)x) - \sin(2(1-n)x) \right] \, dx $$
Let $J_k = \int_{0}^{\pi/2} x \sin(kx) dx$.
IBP implies
$$J_k = \left[ -\frac{x}{k}\cos(kx) \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} -\frac{1}{k}\cos(kx) dx =\\
\left[ -\frac{x}{k}\cos(kx) + \frac{1}{k^2}\sin(kx) \right]_{0}^{\pi/2} =\\
-\frac{\pi}{2k}\cos(k\pi/2) + \frac{1}{k^2}\sin(k\pi/2)$$
Note that for $k = 2n+2, 2n, 2n+4, 2(1-n)$, when multiplied by $\pi/2$, they become $(n+1)\pi, n\pi, (n+2)\pi, (1-n)\pi$ respectively. Since $n$ is an integer, these are always integer multiples of $\pi$. Therefore, $\sin(k\pi/2) = 0$ for all these terms.
So, for $k \neq 0$: $J_k = -\frac{\pi}{2k}\cos(k\pi/2)$.
Also, $\cos(m\pi) = (-1)^m$.
So for each $k$ we have
$3 J_{2n+2} = \frac{3\pi(-1)^n}{4(n+1)}$
$-3 J_{2n} = \frac{3\pi}{4n}(-1)^n$
$- J_{2n+4} = \frac{\pi(-1)^n}{4(n+2)}$
$- J_{2-2n} = \frac{\pi(-1)^n}{4(n-1)}$
Combining these results:
$$ I_n = \frac{1}{8} \left[ \frac{3\pi(-1)^n}{4(n+1)} + \frac{3\pi(-1)^n}{4n} + \frac{\pi(-1)^n}{4(n+2)} + \frac{\pi(-1)^n}{4(n-1)} \right] =\\
\frac{\pi(-1)^n}{32} \left[ \frac{3}{n+1} + \frac{3}{n} + \frac{1}{n+2} + \frac{1}{n-1} \right] \quad \text{for } n \neq 0, 1 $$
For the special cases $n=0, 1$ we have
$n=0:$ $$I_0 = \frac{1}{8} \int_{0}^{\pi/2} x \left[ 3\sin(2x) - 3\sin(0x) - \sin(4x) - \sin(2(1-0)x) \right] \, dx=\\
\frac{1}{8} \int_{0}^{\pi/2} x \left[ 2\sin(2x) - \sin(4x) \right] \, dx = \frac{5\pi}{64}$$
$n=1:$ $$I_1 = \frac{1}{8} \int_{0}^{\pi/2} x \left[ 3\sin(4x) - 3\sin(2x) - \sin(6x) - \sin(0x) \right] \, dx =-\frac{29\pi}{192}$$
Now going back to (1) we still need to calculate
$$
H = \sum_{n=0}^{\infty}\frac{2}{2n+1} I_n = 2I_0-2/3I_1+S \quad (2)
$$ with $S := \sum_{n=2}^{\infty}\frac{2}{2n+1} I_n$.
The summands for $n\geq 2$ are given by
$$ a_n = \frac{2}{(2n+1)} I_n= \frac{\pi(-1)^n (2n^2+2n-3)}{8(n-1)n(n+1)(n+2)} $$
After partial fraction decomposition this is given by
$$ a_n = \frac{\pi(-1)^n}{8} \left[ \frac{1}{6(n-1)} + \frac{3}{2n} - \frac{3}{2(n+1)} - \frac{1}{6(n+2)} \right] $$
We can split the sum into four parts:
$$ S = \frac{\pi}{8} \left[ \frac{1}{6} \sum_{n=2}^{\infty} \frac{(-1)^n}{n-1} + \frac{3}{2} \sum_{n=2}^{\infty} \frac{(-1)^n}{n} - \frac{3}{2} \sum_{n=2}^{\infty} \frac{(-1)^n}{n+1} - \frac{1}{6} \sum_{n=2}^{\infty} \frac{(-1)^n}{n+2} \right] $$
Each of these series can be computed using the known sum of the alternating harmonic series: $$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln(2).$$
In particular:
$\sum_{n=2}^{\infty} \frac{(-1)^n}{n-1}= \ln(2)$.
$\sum_{n=2}^{\infty} \frac{(-1)^n}{n}= 1 - \ln(2)$.
$\sum_{n=2}^{\infty} \frac{(-1)^n}{n+1}= -\ln(2) + \frac{1}{2}$.
So, $\sum_{n=2}^{\infty} \frac{(-1)^n}{n+1} = -(-\ln(2) + \frac{1}{2}) = \ln(2) - \frac{1}{2}$.
$\sum_{n=2}^{\infty} \frac{(-1)^n}{n+2}=-\ln(2) + \frac{5}{6}$.
$$ S = \frac{\pi}{8} \left[ \frac{-24\ln(2) + 19}{9} \right] = \frac{\pi(19 - 24\ln(2))}{72} $$
Now inserting this back in (2) and having $I_0 = 5 \frac{\pi}{64}, I_1 = -29 \frac{\pi}{192}$
we get the final answer
$$
\boxed{H = \frac{\pi }{18}+\frac{1}{72} \pi (19-24 \log (2)).}
$$