1

Is $P(x)=x^n+2x^{n-1}+3x^{n-2}+\cdots+nx+(n+1)$ irreducible in $\mathbb{Z}[x]$ for all $n$?

Approach.

Lemma. From the book: Edmund Landau. Darstellung und Begrundung einiger neuerer Ergebnisse der Funktionentheorie.

enter image description here

Applying the lemma we have that all the roots have a module $|\alpha|>1$. If $n+1$ is prime then by contradiction (Vieta's formulas) $$P(x)=(x^r+\cdots\pm 1)(x^s\cdots\pm p)$$ it is shown that $P(x)$ is irreducible, but if $n+1$ is not prime $P(x)$ is irreducible?

Any hint would be appreciated.

felipeuni
  • 5,510

0 Answers0