Some quick observations. The given condition holds if and only if $A$ and $A^\ast A$ have the same characteristic polynomial, i.e., if and only if $\lambda_i(A)=\sigma_i(A)^2$ for each $i$ when the eigenvalues of $A$ are arranged in descending order.
In particular, $\rho(A)=\lambda_1(A)=\sigma_1(A)^2=\|A\|_2^2$. Since $\rho(A)\le\|A\|_2$ in general, we must have $\lambda_1(A)=\sigma_1(A)^2\le1$. Hence $A$ is unitarily similar to $\pmatrix{I\\ &B}$ for some matrix $B$ with $\lambda_i(B)=\sigma_i(B)^2$ for each $i$ and $\|B\|_2<1$. (Here $B$ is void and $A=I$ if $\|A\|_2=1$; $I$ is void and $B=A$ if $\|A\|_2<1$.) In particular, $\det(B)=\det(B^\ast B)$. Hence $\det(B)$ is either $0$ or $1$. Since $\|B\|_2<1$, $|\det(B)|<1$. Therefore $B$ must be singular if it is not empty.
$B$ can be quite arbitrary. E.g. suppose that we want $r=\operatorname{rank}(B)\le\dim\ker(B)$. Let $X$ be any $r\times r$ triangular matrix with all eigenvalues in $(0,1)$. When the off-diagonal entries of $X$ are sufficiently small, its singular values will be very close to its eigenvalues. Therefore $\sigma_i(X)^2<\lambda_i(X)$. Let $USV^\ast$ be a singular value decomposition of $X$. Let $D=\operatorname{diag}\left(\sqrt{\lambda_1(X)-\sigma_1(X)^2},\ldots,\sqrt{\lambda_r(X)-\sigma_r(X)^2}\right)$ and
$$
B=\pmatrix{X&0&0\\ UDV^\ast&0_{r\times r}&0\\ 0&0&0}.
$$
Then $\lambda_i(B)=\sigma_i(B)^2$ for each $i$, $\|B\|_2<1$ and $\det(B)=0$.