Yes there is, with $Y_l^m(\theta,\phi)\propto e^{im\phi}P_l^m(\cos\theta)$, absorbing the normalisation constant into $a_n$:
\begin{align}e^{i\phi}\cos\theta &= \sum_{n=1}^\infty c_n Y_{2n}^1(\theta,\phi)\\&= \sum_{n=1}^\infty a_ne^{i\phi}P_{2n}^1(\cos\theta)
\end{align}
with $l=2n$, noting that the coefficients are zero for odd $l$ [as $P_{2n+1}^1(x)$ is even]. As @Pranay said in a comment, $l\ge|m|$, not $l\le|m|$.
The coefficients $a_n$ are given by (more details at the end)
\begin{align}
\frac{a_n}{-\pi} &=\frac{(4 n + 1)(2 n - 1)!}{-2\pi(2 n + 1)!}\int_0^\pi \sin\theta d\theta P_{2n}^1(\cos\theta)\cos\theta\\
&=\binom{-\tfrac12}{n}^2\frac{n+\frac14}{(n+1)(2n-1)}\\
&= \frac5{2^5}, \frac9{2^8}, \frac{65}{2^{12}}, \frac{595}{2^{16}},\frac{3087}{2^{19}},... \:n=1,2,3,4,5,...
\end{align}
Here is a plot from the first 5 terms.

and for the first 50 terms, the Gibbs phenomenon is evident:

Edit: more details on $a_n$, with $x=\cos\theta$, also using https://en.wikipedia.org/wiki/Legendre_polynomials for the explicit form of $P_{2n}(x)$.
\begin{align}
J_n &= \int_0^\pi \sin\theta d\theta P_{2n}^1(\cos\theta)\cos\theta\\
&= \int_{-1}^1 dx P_{2n}^1(x)x\\
&= -\int_{-1}^1 dx \,x\sqrt{1-x^2}\frac{d}{dx}P_{2n}(x)\\
&= \int_{-1}^1 dx \,\frac{1-2x^2}{\sqrt{1-x^2}}P_{2n}(x)\\
&= \frac1{2^{2n}}\sum_{k=0}^n (-1)^k \binom{2n}{k} \binom{4n-2k}{2n}\int_{-1}^1 dx \,\frac{1-2x^2}{\sqrt{1-x^2}}x^{2(n-k)}\\
&= \frac1{2^{2n}}\sqrt\pi\sum_{k=0}^n (-1)^k \binom{2n}{k} \binom{4n-2k}{2n}(k-n)\frac{\Gamma(\frac12-k+n)}{\Gamma(2-k+n)}\\
&= -\frac{n}{2^{2n}}\sqrt\pi\binom{4n}{2n}
\frac{\Gamma(\frac12+n)}{\Gamma(2+n)}S_n\\
S_n &= \sum_{k=0}^n b_k\\
b_0 &= 1\\
\frac{b_{k+1}}{b_k} &= -\frac{(n - 1 - k)(n + 1 - k)}{(2 n - \frac12 - k)(1 + k)}\\
b_k &= (-1)^k\frac{(n-1)_k(n+1)_k}{(2n-\frac12)_k k!}\\
&= \frac{(1-n)^{(k)}(-1-n)^{(k)}}{(\frac12-2n)^{(k)}k!}\\
S_n &= {}_2F_1(1-n,-1-n;\frac12-2n;1)\\
&= \frac{\sqrt\pi\Gamma(\frac12-2n)}{\Gamma(-\tfrac12-n)\Gamma(\frac32-n)}\\
J_n &= -\frac{n}{2^{2n}}\pi\binom{4n}{2n}
\frac{\Gamma(\frac12+n)}{\Gamma(2+n)}
\frac{\Gamma(\frac12-2n)}{\Gamma(-\frac12-n)\Gamma(\frac32-n)}\\
&= -\frac{\pi^2}{\Gamma(-\frac12-n)\Gamma(\frac32-n)\Gamma(n)\Gamma(n+2)}\\
\frac{a_n}{-\pi} &= \frac{n + \frac14}{n(2 n + 1)} \frac{\pi}{\Gamma(-\frac12-n)\Gamma(\frac32-n)\Gamma(n)\Gamma(n+2)}\\
&=\binom{-\tfrac12}{n}^2\frac{n+\frac14}{(n+1)(2n-1)}
\end{align}
using
\begin{align}
\frac{\pi}{\Gamma(-\frac12-n)\Gamma(\frac32-n)} &= \frac{2n+1}{2n-1}\frac{\pi}{\Gamma(\frac12-n)^2}\\
&= \frac{2n+1}{2n-1}\binom{-\frac12}{n}^2(n!)^2
\end{align}
Edit: Some more detail on the integral the OP queried. Might've been easier to not switch to $x=\cos\theta$ and back.
\begin{align}
I_{2m} &= \int_{-1}^1 dx \,\frac{x^{2m}}{\sqrt{1-x^2}}
&= \int_0^\pi d\theta \cos^{2m}\theta
\end{align}
which is easy using, $I_0=\pi$ and $I_{2m}=\frac{2m-1}{2m}\frac{2m-3}{2m-2}\ldots I_0 = \frac{\Gamma(m+\frac12)/\Gamma(\frac12)}{\Gamma(m+1)}\pi$ e.g. from Prove $\int\cos^n x \ dx = \frac{1}n \cos^{n-1}x \sin x + \frac{n-1}{n}\int\cos^{n-2} x \ dx$
So
\begin{align}
\int_{-1}^1 dx \,\frac{1-2x^2}{\sqrt{1-x^2}}x^{2(n-k)}
&= \frac{n-k+1-2(n-k+\frac12)}{n-k+1}\frac{\Gamma(n-k+\frac12)}{\Gamma(n-k+1)}\sqrt\pi\\
&= (k-n)\frac{\Gamma(n-k+\frac12)}{\Gamma(n-k+2)}\sqrt\pi
\end{align}