Supposing we are interested in
$$\sum_{q\ge 0} {m+q\choose k}^{-1}.$$
Recall from MSE
4316307 the
following identity which was proved there: with $1\le k\le n$
$$\frac{1}{k} {n\choose k}^{-1}
= [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$
We can re-write this as
$${n-1\choose k-1}^{-1} =
n [v^n] \log\frac{1}{1-v} (v-1)^{n-k}.$$
We get for our sum writing ${m+q\choose m+q-k}$
$$\sum_{q\ge 0} (m+q+1) [v^{m+q+1}] \log\frac{1}{1-v}
(v-1)^k
\\ = \sum_{q\ge m+1} q [v^q] \log\frac{1}{1-v}
(v-1)^k
= \;\underset{v}{\mathrm{res}}\;
\log\frac{1}{1-v} (v-1)^k
\sum_{q\ge m+1} \frac{q}{v^{q+1}}
\\ = - \;\underset{v}{\mathrm{res}}\;
\log\frac{1}{1-v} (v-1)^k
\left(\sum_{q\ge m+1} \frac{1}{v^q}\right)'
\\ = - \;\underset{v}{\mathrm{res}}\;
\log\frac{1}{1-v} (v-1)^k
\left(\frac{1}{v^{m+1}} \frac{1}{1-1/v}\right)'.$$
We find for the derivative
$$\left(\frac{1}{v^{m}} \frac{1}{v-1}\right)'.$$
This produces two pieces, the first is
$$\;\underset{v}{\mathrm{res}}\;
\log\frac{1}{1-v} (v-1)^{k-1}
\frac{m}{v^{m+1}}
\\ = m [v^m] \log\frac{1}{1-v} (v-1)^{k-1}
= {m-1\choose m-k}^{-1} = {m-1\choose k-1}^{-1}.$$
and the second
$$\;\underset{v}{\mathrm{res}}\;
\log\frac{1}{1-v} (v-1)^{k-2}
\frac{1}{v^m}
\\ = [v^{m-1}] \log\frac{1}{1-v} (v-1)^{k-2}
= \frac{1}{m-1} (m-1) [v^{m-1}] \log\frac{1}{1-v} (v-1)^{k-2}
\\ = \frac{1}{m-1} {m-2\choose m-k}^{-1}
= \frac{1}{m-1} {m-2\choose k-2}^{-1}.$$
Adding the two contributions
$${m\choose k}^{-1}
\left[ \frac{m}{k} + \frac{1}{m-1} \frac{m(m-1)}{k(k-1)} \right]
= {m\choose k}^{-1} \frac{m}{k} \left[1+ \frac{1}{k-1} \right]
= {m\choose k}^{-1} \frac{m}{k-1}.$$
This confirms the result by @MarkusScheuer.