4

In trying to solve $x^{ax}=x+1$, like for the Foias Ewing constant equation $z^{z+1}=(z+1)^z$, one uses Lagrange reversion which seems to only converge in the following form after letting $x=e^t$:

$$x^{ax}=x+1\iff t=\frac1ae^{-t}\ln(e^t+1)\implies x=1+\sum_{n=1}^\infty\frac{a^{-n}}{n!}\left.\frac{d^{n-1}}{dt^{n-1}}e^{(1-n)t}\ln^n(e^t+1)\right|_0$$

One could easily expand $\ln(x+1)^n$ using the Stirling number of the first kind $S_n^{(m)}$ and find $\frac{d^{n-1}}{dt^{n-1}}e^{(1-n+m)t}\Big|_0$ to get a double sum solution, but $x=e^0=1$ is on the radius of convergence. Expanding $\ln^n(e^x+1)=\sum\limits_{k=n}^\infty(-1)^{n+k}\frac{n!}{k!}S_k^{(n)}(e^{-x}+1)^{-k}$ gives:

$$x=1+\sum_{n=1}^\infty\sum_{k=n}^\infty\frac{a^{-n}}{k!}(-1)^{n+k}S_k^{(n)}\left.\frac{d^{n-1}}{dt^{n-1}}e^{(1-n)t}(e^{-t}+1)^{-k}\right|_0$$

The derivative almost looks like the Norlund polynomials . Also, Binomial series converges for $e^t<1$ or $e^t>1$, but not $e^t=1$. There is a way to use expand it using Stirling numbers of the second kind $s_n^{(m)}$, general Leibniz rule, and $\frac{d^n}{dx^n}\ln^a(x)$:

$$x=1+\ln(2)+\sum_{n=2}^\infty\sum_{k=1}^{n-1}\sum_{m=0}^k\sum_{j=0}^m\binom kms_{n-1}^{(k)}\frac1{n!}(1-n)^{(k-m)}(n-j+1)_jS_m^{(j)}2^{-m}\ln(2)^{n-j}$$

with the Pochhammer symbol $(x)_n$ and factorial power $x^{(n)}$. However, it is a quadruple series and expanding creates negative arguments for the gamma functions.

How does one evaluate $\displaystyle \left.\frac{d^{n-1}}{dt^{n-1}}e^{(1-n)t}\ln^n(e^t+1)\right|_0$ as a single or double sum?

Тyma Gaidash
  • 13,576
  • A side note - Have you thought of trying other ways to solve $x^{ax} = x+1$? – Kraken Nov 24 '24 at 10:09
  • @Kraken For $a=1$, there is this question, but it is too long. Other set ups with the theorem in the question diverged. – Тyma Gaidash Nov 24 '24 at 13:35
  • One can at least evaluate $T(n)\equiv \frac{d^{n-1}}{dt^{n-1}} e^{(1-n)t}\ln^n (e^t+1)$ at $t=0$ with a CAS. $T(1) = 1/2$, $T(2)=1/2-3\ln 2/2+\ln^2 2\approx -0.0592$, $T(3) = 3/4-27\ln 2/4 +27\ln^2 2/2-8\ln^3 2\approx -0.10682$, $T(4)=3/2-27\ln 2+441\ln^2/4 -325\ln^3 2/2+81\ln^4 2\approx 0.33610$. – R. J. Mathar Dec 12 '24 at 21:38
  • 1
    @ТymaGaidash To make it explicit: $x^{\alpha x} = \beta x + 1 \Rightarrow x = 1 + \sum_{m=1}^{\infty}\sum_{n=1}^{m} \frac{\alpha^{-n} \beta^m}{m!} S_m^{(n)} (1-n+m)^{n-1}$. For example: $x^{3x}=2^{-1}x + 1 \Rightarrow x = 1 + \sum_{m=1}^{\infty}\sum_{n=1}^{m} \frac{3^{-n}}{2^m m!} S_m^{(n)} (1-n+m)^{n-1} \approx 1.14096197385$ –  Jan 17 '25 at 14:57

0 Answers0