I'm trying to simply prove the Basel Series
$$ \sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6} $$
by deconstructing it into a sum of Sub-Series.
I was able to show using WolframAlpha that
$$ \frac{1}{(2n - 1)^2} = \int_{0}^{1} \int_{0}^{1} x^{2n-2} y^{2n-2} \, dx \, dy $$
Thus, $$ \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^2} = \sum_{n=1}^{\infty} \int_{0}^{1} \int_{0}^{1} x^{2n-2} y^{2n-2} \, dx \, dy = \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - x^2 y^2} \, dx \, dy $$
But, to complete the Basel proof and avoid any circular arguments, I need to show that
$$ \int_{0}^{1} \int_{0}^{1} \frac{1}{1 - x^2 y^2} \, dx \, dy = \frac{\pi^2}{8} \tag{1} $$
Proof
Every natural number $n$ can be written in one and only one way as $2^mq$ where $q=(2n-1)$ is an odd number.
Define the Sub-Series:
$$ S_m = \sum_{n=1}^{\infty} \frac{1}{\left(2^m (2n - 1)\right)^2} = \frac{1}{4^m} \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^2} $$
Notice the sum of all $S_m$ reconstructs the Basel series:
$$ \sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{m=0}^{\infty} S_m = \sum_{m=0}^{\infty} \frac{1}{4^m} \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^2} = \frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^2} $$
The result follows from $(1)$:
$$ \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{(2n - 1)^2} = \frac{4}{3} \cdot \frac{\pi^2}{8} = \frac{\pi^2}{6} \quad \blacksquare $$