let $f$ on $[a,b]$ two continuously differentiable functions,such
$$f(a)=f(b)=0, f'(a)=1,f'(b)=0,b>a>0$$ show that $$\int_{a}^{b}[f''(x)]^2dx\ge\dfrac{4}{b-a}$$
My idea: use Cauchy-Schwarz inequality $$\int_{a}^{b}[f''(x)]^2dx\cdot\int_{a}^{b}g^2(x)dx\ge\left(\int_{a}^{b}f''(x)g(x)dx\right)^2$$ How find the $g(x)$?
then I think
\begin{align} \int_{a}^{b}f''(x)g(x)dx &=\int_{a}^{b}g(x)df'(x)=f'(x)g(x)|_{a}^{b}-\int_{a}^{b}f'(x)g(x)dx\\ &=f'(b)g(b)-f'(a)g(a)-\int_{a}^{b}g(x)df(x)\\ &=-g(a)+\int_{a}^{b}g'(x)dF(x)\\ &=-g(a)+F(x)g'(x)|_{a}^{b}-\int_{a}^{b}F(x)g''(x)\\ &=-g(a)+F(b)g'(b)-F(a)g'(a)-\int_{a}^{b}F(x)g''(x)dx \end{align} where $F(x)=\int_{a}^{x}f(t)dt$
Now following I can't find the $g(x)$? can you help me or use other methods solve it? Thank you
and some hours ago: I ask this integral inequality:How prove this $\int_{a}^{b}f^2(x)dx\le (b-a)^2\int_{a}^{b}[f'(x)]^2dx$